
Intelligence 42 (2014) 53–82

Contents lists available at ScienceDirect

Intelligence
A spiking neural model applied to the study of human
performance and cognitive decline on Raven's Advanced
Progressive Matrices
Daniel Rasmussen⁎, Chris Eliasmith
Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2J 3G1, Canada
a r t i c l e i n f o
⁎ Corresponding author.
E-mail addresses: drasmuss@uwaterloo.ca (D. Ra

celiasmith@uwaterloo.ca (C. Eliasmith).

0160-2896/$ – see front matter © 2013 Elsevier Inc. A
http://dx.doi.org/10.1016/j.intell.2013.10.003
a b s t r a c t
Article history:
Received 12 April 2013
Received in revised form 19 September 2013
Accepted 21 October 2013
Available online xxxx
We present a spiking neural model capable of solving a popular test of intelligence, Raven's
Advanced Progressive Matrices (RPM). The central features of this model are its ability
to dynamically generate the rules needed to solve the RPM and its biologically detailed
implementation in spiking neurons. We describe the rule generation processes, and
demonstrate the model's ability to use the resulting rules to solve the RPM with similar
performance and error patterns to human subjects. Investigating the rules in more detail, we
show that they successfully capture abstract patterns in the data, enabling them to generalize
to novel matrices. We also show that the samemodel can be used to solve a separate reasoning
task, and demonstrates the expected positive correlation in performance across tasks. Finally,
we demonstrate the advantages of the biologically detailed implementation by using the
model to connect behavioral and neurophysiological data. Specifically, we investigate two
neurophysiological explanations of cognitive decline in aging: neuron loss and representa-
tional “dedifferentiation”. We show that manipulations to the model that reflect these
neurophysiological hypotheses result in performance changes that match observed human
behavioral data.

© 2013 Elsevier Inc. All rights reserved.
Keywords:
Raven's Progressive Matrices
Vector symbolic architectures
Cognitive decline
Aging
Spiking neural model
1. Introduction

Cognitive modeling has been making dramatic progress in
recent years along two different, but related, dimensions. The
first is the modeling of more complex tasks—creating systems
that are able to model human performance in an increasingly
broad array of cognitively challenging domains (Ashby,
Ennis, & Spiering, 2007; Frank & Badre, 2012). The second is
the modeling of ever greater biological detail—creating
systems that recreate the inner mechanisms of biological
brains in increasing fidelity (Bourjaily &Miller, 2011; Gurney,
Prescott, & Redgrave, 2001; Hazy, Frank, & O'Reilly, 2007).
One of the important challenges now is to connect
these dimensions, creating models that are able to perform
smussen),

ll rights reserved.
complex cognitive tasks using biologically detailed mecha-
nisms. These models provide new ways to think about the
functional mechanisms giving rise to the complex processes
of intelligence, as well as new ways to understand how those
mechanisms are connected to the underlying neural process-
es of the brain.

In this paper we have chosen to explore the Raven's
Progressive Matrices intelligence test (RPM; Raven, Raven, &
Court, 1991), a reasoning task wherein subjects must induce
the rules governing a set of geometric figures in order to
complete an often complicated pattern. The primary reason
for choosing this task is its widespread usage in both clinical
and research settings. This ensures that there is an abun-
dance of neurophysiological and behavioral data, which we
can use both to constrain the model and to evaluate its
performance. This will enable us to examine whether or not
the model succeeds in the dual goals of accounting for
complex cognitive performance with biologically detailed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.intell.2013.10.003&domain=pdf
http://dx.doi.org/10.1016/j.intell.2013.10.003
mailto:drasmuss@uwaterloo.ca
mailto:celiasmith@uwaterloo.ca
http://dx.doi.org/10.1016/j.intell.2013.10.003
http://www.sciencedirect.com/science/journal/01602896

1 To preserve the security of the test we present modified matrices in the
figures of this paper; the model works with the true Raven's matrices.

54 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
mechanisms. Previous work has described a large-scale
model that included a simplified version of the system
presented here (Eliasmith et al., 2012). In that work the
focus was on integrating sensory input, reasoning, and motor
output; here we focus on the reasoning system in detail, both
greatly expanding its function and providing a detailed
analysis of its performance.

Along the cognitive dimension, the model we present here
is unique in its ability to generate the rules describing a Raven's
matrix in a dynamic, flexible, general manner. Previousmodels
have relied on rules built in by the modelers, or rule systems
tailored to the Raven's test. While these models provide
interesting insight into various aspects of Raven's performance,
it seems likely that human subjects employ more general rule
generation abilities. For example, analysis of the RPM itself
(Marshalek, Lohman, & Snow, 1983), as well as psychometric
and neuroimaging practice (Gray, Chabris, & Braver, 2003;
Perfetti et al., 2009; Prabhakaran, Smith, Desmond, Glover, &
Gabrieli, 1997), show the RPM to be a fluid taskwith aminimal
dependence on previous experience. With the proposedmodel
we provide an explanation for how rules could be generated in
the dynamic, general manner exhibited by human subjects.

A second novel aspect of this model is its biologically
detailed implementation. The presented model consists of
networks of spiking neurons modeled on the physiology,
connectivity, and dynamics of biological neurons. This
connection to biology provides several advantages. One is
that it allows us to use neurophysiological evidence to
provide constraints on the model, ensuring that its mecha-
nisms operate successfully within the limitations and
abilities of the human brain. Another is that the neural
implementation allows us to map the results of the model
onto a wider variety of empirical data. For example, we can
compare neurophysiological changes observed in humans to
variations in the neural mechanisms of the model. More
symbolic models require an additional layer of abstraction—
reinterpreting neurophysiological changes in terms of
non-neural variables such as signal noise or response time.

In order to demonstrate this feature of themodel,we apply it
to the problem of understanding the causes of cognitive decline.
This is a clear example of the type of problem that requires the
melding of complex cognitive performance and biological detail.
As we get older, we decline in a broad range of behavioral
measures, from simple processing speed (Salthouse, 1996) to
overall performance on batteries of intelligence tests (Kaufman,
Reynolds, & McLean, 1989). More recently there has arisen a
growing body of evidence describing changes in neurophysio-
logical variables that might account for these declines, such as
gray matter reduction (Fjell et al., 2006)—which could be
associated with neuron death, neuron atrophy, or dendritic
shrinkage—myelin damage (Peters & Sethares, 2002; Sullivan,
Adalsteinsson, & Pfefferbaum, 2006), loss of connectivity (Goh,
2011; Madden, Bennett, & Song, 2009), dedifferentiation of
neural representations (Park, Carp, Hebrank, Park, & Polk, 2010;
Park et al., 2004), and reduced neurotransmitter efficiency
(Kaasinen et al., 2000). However, the challenge in testing such
hypotheses is that when investigating these alternatives in
elderly subjects, most if not all of these factors are present to
some degree. This makes it difficult to isolate the effects of any
one factor, or to investigate systematically how they interact. In
addition, researchers are restricted to observing the levels of
these factors available in their subjects; in general, they cannot
directly manipulate the variables in which they are interested.
Our results help to demonstrate how biologically detailed
cognitive neuralmodeling canbegin to address these challenges.

We begin by describing the model and its methods. We
then explore the first dimension, complex cognitive perfor-
mance, providing several demonstrations of the model's
ability to generate appropriate rules that enable it to solve
Raven's matrices. Next, we explore the second dimension by
using the biologically detailed implementation to examine
two hypothesized neurophysiological aging factors: neuron
loss and representational “dedifferentiation”. We conclude
with a discussion of the advantages and disadvantages of the
model, and of the general principle of creating models that
combine complex cognitive performance with a biologically
detailed implementation.

2. Background

2.1. Raven's Progressive Matrices

The Raven's Progressive Matrices test (RPM) was origi-
nally developed in 1936. Since then it has undergone several
revisions, new versions have been added, and it has become
one of the most widely used tests of general intelligence (Van
De Vijver, 1997). The version of the test used in our research
is the Advanced Progressive Matrices (unless otherwise
mentioned, when we refer to Raven's matrices or the RPM
we are referring to the Advanced version). The two other
versions, Colored and Standard, are generally used to test
children or lower performing adults (such as those with
cognitive deficits), while the Advanced test is used to
differentiate average/above-average adult subjects. Since we
are interested in understanding normal, unimpaired adult
reasoning, the Advanced test is most appropriate for studying
those subjects. It also represents the most difficult version of
the test, presenting the greatest challenge for the goal of
combining complex cognition with biological detail.

Each question in the RPM consists of a single matrix. Each
matrix consists of a 3 × 3 arrangement of cells, and each cell
contains an assortment of geometric features, with the
exception of a blank cell in the bottom right (Fig. 1).1 There
are eight candidate answers for the blank cell given underneath
the matrix. A matrix is governed by a set of rules that describe
patterns along the rows or columns of the matrix. The subject's
task is to induce those rules based on the information presented,
and then determine which of the eight possible candidates
would best complete the pattern for the third row/column if
placed in the blank cell.

2.1.1. Previous models
The most influential model of the RPM is that of

Carpenter, Just, and Shell (1990). Theirs is a production
system (Concurrent, Activation-based Production System;
Thibadeau, Just, & Carpenter, 1982) based model; it operates
by moving information in and out of a shared memory area,
and the presence of certain patterns of information in that
memory can trigger the execution of different “productions”,

Fig. 1. A simple Raven's-style matrix. The number of arrows is increasing by
one along the row, and in each row the arrows are pointed upwards, to the
left, and to the right (with the order shuffled). The correct answer is three
arrows pointing upwards.

55D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
which further modify the contents of the memory. Its
solution process is based on detecting smaller patterns in
the matrix, building those patterns up into complete rules,
and then applying those rules to select an answer. This was
the first model able to solve Raven's matrices, and it revealed
the impressive ability of modeling to provide new insight
into what was already a well-studied task at that time.
Carpenter et al. used their model to demonstrate the
importance of working memory in RPM performance, as
well as provide support for qualitative differences in RPM
rule types. There are two main weaknesses to this model,
however. First, its rule system is closely tied to the structure
and content of the RPM. It takes a “recognition” based
approach, detecting externally defined patterns that charac-
terize common Raven's rules (such as an increase in the
number of objects with the same shape), rather than building
generic rules in a bottom-up fashion from the matrix data.
Second, the model is characterized only at a high level of
abstraction. It operates in a purely symbolic fashion, and it is
unclear how the rules and structures of the model map onto
lower level (such as neuroanatomical or neurophysiological)
processes. Although this still allows many interesting com-
parisons to human performance, there are some questions
that cannot be answered with such a model. For example,
their model simulates changes in working memory ability by
placing fixed limits on the number of rules that can be stored
in memory (3, 4, 5, or unlimited). By providing a biologically
detailed explanation, our model is able to demonstrate a
more natural gradient of performance, as well as enable
analysis as to the neurophysiological changes that might
drive those changes in storage ability (see Appendix C).
However, this should not be taken to understate the
importance of the Carpenter et al. (1990) model; it laid the
groundwork for all future modeling on this task, and still
shapes much of our understanding of RPM performance.

The model of Lovett, Forbus, and Usher (2010) was
developed for the Standard Progressive Matrices as opposed
to the Advanced version used in the Carpenter et al. (1990)
model and our own; however, there are many similarities
between the two test versions, and so we include a discussion
of their model here. The Lovett et al. model makes interesting
steps in automating the visual processing of the matrices. The
matrix must be manually segmented into its component
shapes, but the model then uses an automated sketch
recognition system to extract relationship information among
those components (e.g., “inside of”, “next to”). Next, the model
applies Gentner's Structure Mapping Engine (1983) to those
representations in order to identify corresponding elements
across the rows. The model then examines the corresponding
elements to identify which of several predefined geometric
transformation rules describe how those objects change across
the row (Identity, Transformation, Deformation, Shape Change,
or Addition/Removal). The main difference between the Lovett
et al. model and the one presented here is that they have
focused their efforts on visual processing—extracting spatial
relationships and identifying corresponding elements—but still
rely on rules defined by the modelers. Our model has the
opposite focus; we do not include visual processing, but
account for the dynamic generation of rules. In addition, the
Lovett et al. model ismore computational than biological; there
is little indication how it might be implemented in the neural
hardware of the brain. This limits the insight the model can
provide into human problem solving processes. As an example,
because of its primarily computational approach the model is
completely deterministic, producing the same answers, the
same rules, and the same overall score each time it is run. This
makes it difficult to explore individual differences or other
factors that may increase or decrease performance. However,
the effort to automate visual processing is an important one,
and the Lovett et al. model makes interesting progress in that
direction.

The work of Kunda, McGreggor, and Goel (2012) takes a
novel approach, doing away with propositional representa-
tions entirely—they work purely with the visual information in
thematrix image. They present two related models, referred to
as the fractal and affine models. The models look at either
whole cells (affine) or small segments (fractal), such as a
square of pixels, and try to determine if a known transforma-
tion can be used to map that image data onto another cell. The
set of all the transformations for the data in a cell represents the
“rule” for that cell (i.e., it describes how one cell can be
transformed to generate another). Even more-so than the
Lovett et al. model, this is a computationally rather than
biologically inspired solution to the Raven's matrices problem.
This is not to say that there are not interesting insights to be
made from the model's general performance (for example, the
authors have used their model to examine the error patterns of
autistic subjects), as well as the ability to solve the Raven's
problems using only pixel-based representations. But if the
goal is to understand the underlying mechanisms the human
brain might use to solve these tasks—and the intricacies of
human performance that arise from thosemechanisms—then a
new approach is required.

2.2. Modeling methods

There are two theoretical frameworks that form the basis of
our model, each corresponding to a different level of represen-
tation. The first, more abstract, level manipulates the informa-
tion contained in a Raven'smatrix using psychologically relevant
mathematical operations. This is characterized using a Vector

56 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
Symbolic Architecture (VSA). The second, neurally grounded,
level is concerned with implementing those mathematical
representations and operations in large populations and
networks of realistic simulated neurons. For this we use the
Neural Engineering Framework (NEF). We give a brief overview
of the theory behind VSAs here; for a similar discussion of the
NEF, see Appendix A.

2.2.1. Vector symbolic architectures
VSAs are a family of techniques that use high-dimensional

vectors to represent structured, conceptual information
(Gayler, 2003). For example, in the sentence “the dog chases
the ball” there are three basic semantic elements—“dog”,
“ball”, and “chase”—that sit in a particular syntactic relation.
When translating such a sentence into a mathematical
representation, it is necessary to represent both the items and
those relations—“the dog chases the ball” is very different from
“the ball chases the dog”. VSAs allow us to achieve the goal of
representing the individual elements aswell as their role in the
structure.

First we construct a vocabulary of semantic elements, such
as “dog”, “ball”, “chase”, and so on. This is done by associating a
high-dimensional vector with each word. For example, “dog”
could be [0.3 0.4 0.1 …], “cat” could be [0.2 0.6 0.4 …] and
“chase” could be [0.7 0.2 0.1 …]. For present purposes, the
specific values of these vectors are not important, all that
matters is that each vector corresponds to a concept, and that it
is possible to identify the concept being represented by
examining the vector.2

An important question when considering a vocabulary is
how many words can be distinguished. In VSAs, this amounts
to asking how many unique points can be represented by the
vectors. Theoretically, given perfect precision, the answer is
that even a one-dimensional vector can represent an infinite
number of concepts, because we can simply keep picking a
different value for that vector and associating it with a new
concept. However, given the approximation present in the
VSA operations (as we will see), as well as the inherent noise
and imprecision of biologically plausible neurons, the
practical number of concepts that can be represented has
limits. For example, if we return to a one-dimensional vector
with values ranging between 0 and 1, and assume that
vectors must be at least 0.1 apart in value in order to be
recognizable, then the vocabulary can represent at most 11
distinct “words” ([0.0], [0.1], …, [1.0]).

Despite these limitations, VSAs do scale up well to large
vocabularies. Fig. 2 shows an example of this, demonstrating
how the number of dimensions required increases with the
number of words we want to represent.3 The particular
2 Note that just because it is not necessary for the vectors to have anything
other than a random relationship to the concepts they represent does not
mean that we could not create a non-random relationship if we chose. This
idea is explored in detail in Eliasmith (2013).

3 These values were calculated by randomly generating sets of vectors of
the given vocabulary size and an initially low dimension. 100 attempts were
simulated to generate a vocabulary where no two vectors in the vocabulary
exceeded the given threshold (similarity is calculated as the inner product of
the two vectors). If no successfully distinct vocabularies were found, the
dimension was increased and the process was repeated. Thus these values
represent a rough approximation only, and overestimate the true minimum
dimension required; for a more thorough analysis of vocabulary accuracy
see Plate (2003).
relationship between vector dimension and vocabulary size
depends on the similarity we allow between the vectors. If we
allow vectors to be at most 50% similar to each other then we
can fit more vectors into the vocabulary than if we only allow
30% similarity. There is no fixed value for that percentage;
depending on the noise and precision required in a particular
task, it might be possible to distinguish vectors with 10%
accuracy or 90%. The important point is that as the number of
words we want to represent increases, the required dimension
increases in a sublinear fashion. In other words, the size of the
vectors does not explode for large vocabularies. For a more
in-depth analysis of the biological plausibility of implementing
adult-sized vocabularies in VSAs, see Stewart, Tang, and
Eliasmith (2011) and Eliasmith (2013).

Having characterized a vocabulary representation, we
must also combine the elementary vectors (words) together
to represent structure. For this, VSAs require two operations:
a superposition operation that combines vectors into a set,
and a binding operation that “ties” two vectors together. The
important aspect of the first operation is that it creates a new
vector that is similar to each of its inputs (where similarity is
defined as the inner product of the two vectors). The
important aspect of the second operation is that it creates a
new vector that is different from each of its inputs, but from
which those original inputs can still be recovered. Different
VSA implementations are defined by their choice of these
operators.

We follow the Holographic Reduced Representation
implementation (Plate, 2003) in using vector addition as
our superposition operation and circular convolution as our
binding operation.4 Vector addition is the element-wise
addition of the two vectors, which can be thought of as
producing an average of the two. Circular convolution is
more complicated, defined as

C ¼ A⊛B

where

c j ¼
Xn−1

k¼0

akbj−kmod n:

ð1Þ

Circular convolution can be thought of as the multiplication to
superposition's addition (e.g., it is commutative, associative,
and distributive). Circular convolutionmeets the two criteria of
a binding operation: it produces a vectorwhich is not similar to
A or B, yet it is still possible to recover A or B from C. Recovery
can be accomplished using a pseudoinverse. The pseudoinverse
of A, A′ is defined as

a′i ¼ a−imodn: ð2Þ

This results in the flipping of all elements except the first
(e.g. [1 2 3 … 10] becomes [1 10 … 3 2]). The pseudoinverse
4 In true HRRs all vectors and operations on those vectors are normalized.
However, sometimes in our model we relax this constraint in order to
simplify the computations, settling for approximate normalization. Thus this
is not a true HRR implementation, but the approximation does not
significantly alter the representation, given the noise already inherent in
neural representations.

Fig. 2. Minimum vector dimension required to ensure that no two vectors in
the vocabulary exceed 30%, 40%, or 50% similarity.

57D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
has the useful property that A ⊛ A′ ≈ I, where I is the
identity vector. This can be used as follows:

C ¼ A⊛ B
C ⊛ B′ ¼ A⊛ B⊛ B′

≈ A⊛ I
≈ A:

ð3Þ

In other words, given the vector C containing A and B, it is
possible to recover A by convolving C with the inverse of B
(and vice versa to recover B).

With these tools it is possible to encode structured
information. For example, to encode “the dog chases the ball”
we could create a vector A = subject ⊛ dog + object ⊛ ball +
verb ⊛ chase (subject, object, and verb are just more vocabulary
vectors). This is different from “the ball chases the dog” because
subject ⊛ dog is different from subject ⊛ ball; we are not only
encoding what elements are present, but the structure of those
elements—how they are related to one another. We can also
encode hierarchical structure, such as combining an indepen-
dent clause (ic) and a dependent clause (dc) in the phrase “the
dog chases the ball while at the park”. Wemight encode this as
C = ic ⊛ A + dc ⊛ B (where B represents “while at the park”).

The information can also be extracted back from the
combined vector. For example, if we had C and wanted to
know the independent clause, we would calculate

C ¼ ic⊛ Aþ dc⊛ B
C ⊛ ic′ ¼ ic⊛ Aþ dc⊛ Bð Þ⊛ ic′

¼ ic⊛ A⊛ ic′ þ dc⊛ B⊛ ic′

≈A⊛ I þ noise
≈A:

(The noise term results from the fact that convolving
arbitrary vectors results in new vectors dissimilar to anything
in the vocabulary, meaning they can be treated as noise.) We
could then use A in further computations. For example, we
could determine the subject by calculating A ⊛ subject′ ≈ dog,
or we could determinewhat role “dog” held in the sentence by
calculating A ⊛ dog′ ≈ subject.

There are many other encoding schemes that could be
used to describe the structure of a sentence, and VSAs can be
used to represent any type of structured information, not just
sentences. VSAs are simply a general tool for representing
and manipulating information—the particular implementa-
tion of those representations can be suited to the task at
hand. In our model we use an attribute ⊛ value encoding
scheme (with some variation due to the structure of the
problems). For example, we could encode cell1,1 of Fig. 1 as
shape ⊛ arrow + number ⊛ one + angle ⊛ 90°. Carpenter et
al. (1990) use a similar attribute–value scheme to encode the
matrices, although in their case the attributes and values are
symbols rather than vectors. We discuss the details of how
we use VSAs to represent Raven's matrices in Appendix B.

3. Model description

There are two primary contributions of this model. First, it
provides a theoretical account of rule generation that works
in a flexible, general fashion. Second, it demonstrates that
this theoretical account can be implemented in a biologically
detailed neural simulation. In this section we describe how
that dynamic rule generation is accomplished. For a more
detailed discussion of the neural implementation, see
Appendix A.

3.1. Scope

With these goals in mind, it is also helpful to be explicit
about which problems this model is not attempting to solve.
To aid in this, we can roughly break the problem of solving a
Raven's matrix down into several subtasks. When solving a
matrix, such as the one shown in Fig. 3, the subject needs to:

1. parse the image into its component parts; for example,
they need to recognize that there is a big empty arrow to
the right of a smaller shaded circle in the top left cell.

2. guess which objects correspond to each other (i.e., which
objects are they going to try to find a rule for). For
example, in this matrix it is natural to think that the big,
empty arrows correspond to each other, and the small,
shaded circles correspond to each other.

3. find a rule for the corresponding items; if they were
looking at the shaded circles, they might notice that the
number of circles is increasing by one across each row.

4. use the rules to select an answer—for example, they might
generate a hypothesis as to what the blank cell should look
like based on their rules, and then choose the answer that
is closest to their hypothesis.

Our model is centered on the third component, rule
generation. Answer selection is also included so that we can
evaluate whether or not the model has discovered correct
rules, but is not the focus of the model. The visual parsing and
correspondence finding are not part of our model; those
steps are accomplished when the matrices are translated
from visual into VSA format, which is done systematically but
not by the model itself (see Appendix B). In previous work
we have investigated the question of integrated performance,
showing how a simplified version of this model can be
embedded within a complete system combining visual input,
reasoning, and motor output (Eliasmith et al., 2012).
However, current models of visual processing are fairly
limited, which prevents them from being applied to complex
visual problems such as the RPM; for example, one of the
main limitations of the above model is that the vision system

Fig. 3. A simple Raven's-style matrix, illustrating the different aspects of
matrix problem solving.

58 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
is only able to recognize the digits 1–9 and a few letters. Here
we instead focus on the reasoning (rule generation) system
in detail, which enables the demonstration and analysis of
much more complex cognition.

This raises the question of whether it is possible to study
these systems in isolation, or whether any model without a
complete explanation from sensory input through to motor
output is incomplete. This is certainly an important issue;
the rule generation is impacted by these other systems, so
our model of rule generation cannot be completely accurate
without those components. But conversely, rule generation
is an integral part of solving Raven's matrices, and so a
greater understanding of that component enhances our
understanding of the whole. We will demonstrate in
Section 4 that this model is able to account for many aspects
of human performance, and so believe that it still provides
useful insight into human cognition in this task. One
advantage of our modeling approach is that everything is
built on the common language of a spiking neural architec-
ture (in our case, the NEF). The NEF is not specific to any area
of the brain or aspect of cognition, it is a general tool for
representing and manipulating information using neurons.
This means that as different systems are developed in the
future using spiking neural architectures (e.g., a vision
system capable of recognizing geometric shapes), they can
be integrated with one another into more comprehensive
models.
3.2. Model architecture

A general picture of the model's structure is shown in
Fig. 4. The rule generation systems are the three components
shown along the bottom. Each one is implemented in
neurons (around 20,000 in total across the components),
and takes the matrix in VSA form as input and returns the
rules it has generated as well as its hypothesis as to the
contents of the blank cell. The control structure is responsible
for coordinating these systems, inputting the matrix data,
and outputting the model's final response.
The three rule generation components attempt to generate
different types of rules, where the types are distinguished by
the information that constitutes a rule. In this workwe describe
rule generation in terms of Raven's matrices, but these rule
types represent general processes that could be applied tomany
different types of problems. Matrices containing the three types
of rules are shown in Fig. 5. “Sequence” rules involve an orderly
progression (e.g., increasing in number, rotation, scaling). These
sequences are defined by an iterative transformation applied to
the previous item in the sequence; for example, the sequence 4,
5, 6 is defined by the operation + 1 (4 + 1 = 5, 5 + 1 = 6).
The rule that the sequence component generates is that
iterative transformation (i.e., given the sequence 4, 5, 6, it will
return a rule equivalent to + 1). “Set” rules involve a set of
features that are repeatedly presented, usually with their order
being shuffled. In this case the rule being generated is the items
that make up the set. “Operation” rules involve two items being
combined in some way to form a third; what needs to be
learned is the operation being used to combine the two items.
For example, given three cells A, B, and C, the operation
component will try to generate an operation (⋄) that satisfies
the problem A ⋄ B = C. Note that the rule types are not
mutually exclusive—some matrices may be solved correctly by
multiple methods. However, all three are required to complete-
ly describe the types of patterns found in the RPM.

From a modeling perspective, we employ three different
components to find these rules because they represent three
fundamentally different types of computations. However, these
distinctions are also supported by empirical work on the RPM.
Several studies have found qualitatively different problem
types and associated problem solving strategies. The most
commonway that these are described is visuospatial problems
(which would encompass our operation and sequence rules)
and analytic problems (our set rules). Kirby (1983) found
empirical evidence for this distinction in human subjects by
creating matrices with two “correct” answers—one if the
subject employs a visuospatial rule, and another if the subject
is using an analytic rule. He showed that he could cause
subjects to use one strategy or the other depending on the
verbal instructions used while administering the test and the
order in which the items were presented. This demonstrates
that humans can use at least two different types of reasoning to
solvematrix problems, and switch between them. Carpenter et
al. (1990) created a similar rule taxonomy based on verbaliza-
tion and eye tracking studies. Their system had five rule types,
which fall within our general components: figure addition or
subtraction (captured by our operation component), distribu-
tion of two values or distribution of three values (captured by
the set component), and quantitative pairwise progression or
constant in a row (captured by our sequence component).

There is also neuroimaging evidence that different problem
types lead to relatively enhanced activity in different brain
regions. Prabhakaran et al. (1997) found that, broadly speaking,
visuospatial RPM problems show predominantly right hemi-
spheric activations (in particular right middle frontal gyrus),
while analytic problems showed a bilateral or left-dominant
activation. More recently, Golde, von Cramon, and Schubotz
(2010) investigated sequence versus set type problems (they
did not include any operation problems), and found that again
there were consistent differences in the patterns of activation
based on the type of problem being solved. In general, these

Fig. 4. Overall architecture of the model. The three neural components are displayed along the bottom. Each component takes a description of the Raven's matrix
in VSA form as input, and returns the rules that describe that matrix and a hypothesis for the contents of the blank cell. The control structure coordinates the
neural components, providing input and collecting output in order to generate a final answer, which it checks for correctness to gather statistics on the model's
performance.

59D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
studies show that the degree and type of distinction we have
made is consistent with the behavioral and neurophysiological
evidence.

Given the neural basis of this model, it is desirable to map
the components of the model onto specific neuroanatomical
areas. However, given current neuroimaging evidence we can
do this only in a very general sense. The problem lies in the
fact that complex tasks such as the RPM elicit widespread
activation throughout the brain, making it difficult to
separate out different functional components, such as rule
generation.

In general, RPM activations fall into a broad frontoparietal
network common in complex reasoning tasks (for a review,
see Jung & Haier, 2007). Prefrontal regions have long been
associated with high fluid intelligence (Duncan, Burgess, &
Emslie, 1995; Duncan & Owen, 2000), the construct most
often associated with the RPM. Rule generation in particular
seems to be dominated by activation in the prefrontal cortex,
especially dorsolateral regions (DLPFC); Seger and Cincotta
(2006) found activation associated with the learning of new
rules to be primarily found in prefrontal areas, and Golde et
al. (2010), Kroger et al. (2002), and Christoff et al. (2001) all
found that activation in DLPFC was correlated with the
number of rules required to solve the matrix. Thus it is in this
region that we believe the model's rule generation compo-
nents lie.

We posit the control structure to be centered around the
basal ganglia. This has been shown to be involved in action
selection by Redgrave, Prescott, and Gurney (1999), and to be
active during matrix reasoning (Christoff et al., 2001; Melrose,
Poulin, & Stern, 2007; Seger & Cincotta, 2006). In addition,
Stewart, Choo, and Eliasmith (2010) have shown that a realistic
neural model of the basal ganglia is able to carry out the types
of control tasks employed in our model.

Parietal brain areas also feature prominently in neuroim-
aging studies of RPMperformance (e.g., Lee et al., 2006), butwe
believe the role they play lies largely outside this model. Bor,
Duncan, Wiseman, and Owen (2003) suggest that while the
primary processing occurs in DLPFC, parietal areas are more
involved in storage; this is important for RPM performance,
both in storing the input information and the results before
response selection, but those functions are performed by the
controller in our system and therefore not modeled at the
neural level. Another role commonly attributed to parietal
areas is encoding visual input into a symbolic form (Jung &
Haier, 2007), another task that is crucial to RPM performance
but outside the current model.

Overall, this localization is very coarse, but as more
accurate and fine-grained neuroimaging data becomes
available for these complex tasks, we will be able to develop
increasingly detailed mappings between neural models and
the underlying neuroanatomy.

We now discuss each of the components in turn,
examining how the rules are induced. For a discussion of
how the computations are implemented at the neural level,
see Appendix A.

3.3. Sequence component

The sequence component is designed to find the iterative
transformations that define a sequence of items. In the context
of Raven'smatrices, these transformations could be incremental

(a)

(b)

(c)

Fig. 5. Sample matrices containing examples of the three different types of
rules distinguished by the model. See text for details.

60 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
rotations, scalings, translations, or increases/decreases in num-
ber; the key aspect is that there is a single manipulation that is
being repeatedly applied to generate the next item in the
sequence. In Fig. 5(a) there are two sequence rules in play: the
number of lines is increasing by one, and the angle of the lines is
constant (constant can be thought of as a sequence defined by
the identity transformation).5
5 Alternatively, we could look at the columns of the matrix as following a
set rule, with the orientation of the lines switching between three different
possibilities. However, Carpenter et al. (1990) found in eye-tracking and
verbalization studies that subjects solving the RPM predominantly use
horizontal, row-based rules to describe the matrices, and so we similarly
restrict the model to row-wise descriptions.
Because we are working with a matrix represented in VSA
form, this is equivalent to saying that there is a single
transformation being applied to one vector (e.g., the top left
cell, cell1,1, of the Raven's matrix) to generate the next vector
in the sequence (cell1,2). We know that the operation is
circular convolution, so the question is what vector is being
convolved with cell1,1 to give cell1,2. If we call that vector T,
then we want to solve for T where cell1,1 ⊛ T = cell1,2, or
equivalently T = cell1,1′ ⊛ cell1,2. For example, if cell1,1 was
one triangle and cell1,2 was two triangles, when we calculate
T the resulting vector will be one which when convolved
with the vector for one triangle gives (approximately) the
vector for two triangles. Thus the T vector is a sequence rule—
it says how to generate the second item given the first.

However, we do not just want to calculate T for a single pair
of cells, we want to calculate a general rule for the whole
matrix. To accomplish this we calculate an individual transfor-
mation for each adjacent pair of cells in the matrix, and then
average those transformations to extract the general rule. For
example, if we look at all the individual transformations for a
matrix, there may be one for moving from “one triangle” to
“two triangles”, one for moving from “two triangles” to “three
triangles”, one for moving from “one square” to “two squares”,
and so on. But when we average across those transformations,
what will be left is what all of those transformation vectors had
in common: the general transformation of increasing the
number of shapes by one. This is the sequence rule for the
matrix, the iterative operation that can be repeatedly applied to
any item to generate the next item in the sequence.We can use
this rule to solve thematrix by applying it to the second last cell
of the matrix (cell3,2), because the next item in that sequence
should be whatever belongs in the blank cell.

The structure of this component is shown in Fig. 6. The
inputs,Ai and Bi, are two adjacent cells of thematrix (the inputs
will cycle across the different pairs of cells). The first population
calculates the transformation vector between those two cells
(the circular convolution of the pseudoinverse of Ai, Ai′, and Bi).
The second population calculates the running average of the
individual transformations (see Fig. A2). The final population
generates a prediction for the blank cell (cell3,3) by convolving
the second-last cell with the average transformation. The
neural implementation of this component is described in
Appendix A.

3.4. Set component

The set component looks for rules involving repeated sets
of items. In the RPM, these could be sets of shapes (e.g., one
square, one circle, and one triangle in each row) or more
subtle sets of attributes (e.g., one shape pointing to the left,
one shape pointing to the right, and one pointing straight
up). The order of the items tends to be shuffled in each row,
but that is not a necessary part of these rules. In Fig. 5(b)
there are two sets in play: one for the shape (triangle, circle,
square) and one for the shading (left, top, bottom).

VSAs provide a natural method to represent sets, through
the use of the superposition operation. Recall that the
superposition of two vectors creates a new vector that is
somewhat similar to eachof the inputs. Thus if we superimpose
multiple vectorswewill have a vector that is somewhat similar
to all the vectors contained within it, which can be thought of

Circular
Convolution

Average
Circular

Convolution

Ai

Bi

Ai

Ai Bi

cell3,2

T
cell3,3

Fig. 6. Schematic diagram of the sequence component. The first population calculates the circular convolution of the two inputs, representing the transformation
between those two cells. The second population calculates the average transformation as the inputs cycle through the different pairs of cells in the matrix. The
third population calculates the circular convolution of the transformation and the second last cell, representing the prediction for the blank cell.

61D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
as representing the set of those items. That is how the set
component calculates its rules. It superimposes the items in
each set (in the case of the RPM, the cells in one row), and then
averages the different set vectors (corresponding to different
rows) to generate a general set representation for the matrix.
To generate an answer, it uses a process of elimination: it
subtracts the known information in the incomplete set (the
third row) from the general set, and the remaining vector is the
component's hypothesis for the blank cell.

The structure of this component is shown in Fig. 7. The
three inputs, Ai, Bi, and Ci, are the three cells in a row. These
inputs are summed to generate a vector representing the set
of items in the row. The “Average” population calculates the
average of the set vectors for each row (see Fig. A2). The final
population sums the average set vector with the negative
representation of the first two cells in the third row, giving a
prediction for the blank cell. The neural implementation of
this component is described in Appendix A.

3.5. Operation component

The operation component searches for rules that involve
previous items being combined in some way to form
subsequent items. The rule that needs to be learned is the
operation being used to perform the combination. In the case
of Raven's matrices, the items are the visual features in the
first two cells of a row, and the operations are different ways
in which those visual features can be combined to form the
third cell. Examples of different possible operations are given
in Fig. 8.

The challenge in this component is that there are a
number of potential operations that could be used to
combine cells. We do not want to hand-build a separate
system to look for each possible operation, we want one
general operation-finding system. This can be accomplished
AverageVector
Addition

A i

B i

Ci

{Ai, Bi,Ci}

Fig. 7. Schematic diagram of the set component. The first population sums the three
those cells. The second population averages those set representations across the r
average set representation, generating a prediction for the blank cell.
by noticing that all the operations in the RPM can be reduced
to the problem of detecting commonalities and differences in
the previous cells. The operations amount to deciding
whether the commonalities or the differences (or both)
should be preserved in the subsequent cell. For example, the
operation in Fig. 8(a) is equivalent to preserving the
commonalities between the first two cells. Fig. 8(b) is an
example of preserving differences. Addition—Fig. 8(c)—
occurs when both the commonalities and differences are
preserved. Thus detecting all the different operations has
been reduced to the problem of detecting the commonalities
and differences between two cells and deciding which of
those sets are being preserved in the third cell.

When detecting commonalities, the set of components
present in the first two cells is known, but not which of those
vectors are in common. However, recall the superposition
operation, which takes multiple vectors and combines them
into a single vector that shares some similarity to each of its
components. If the representations of the first two cells are
superimposed, then any vectors that the two had in common
will now be represented twice in the combined vector. This
means that when comparing how similar the combined
vector is to the components in the first two cells, any vectors
that were in common should stick out as noticeably more
similar. Thus it is possible to detect the commonalities
between two cells by superimposing those cells, examining
how similar the combined vector is to the candidate vectors,
and identifying any candidate vectors that exceed a certain
similarity threshold as common.

Differences can be detected in much the same way, except
that in this case the representations of the two cells are
combined through subtraction rather than addition. This means
that any components the two had in common will be canceled
out, and only the components that were different will be
significantly similar to the component vectors (although some
Vector
Addition

cell3,2

cell3,1

-cell3,1

-cell3,2

cell3,3
{A, B, C}

inputs (the three cells in a row) to create a set representation of the items in
ows. The final population subtracts the two cells in the third row from the

(a)

(b)

(c)

Fig. 8. Examples of different operation rules that could be used to combine two cells to form a third. (a) A “set intersection” type operation; if the first two cells are
imagined overlayed on one another, only the overlapping components appear in the third cell. (b) An “exclusive or” type operation, where only the
non-overlapping components appear in the third cell. (c) A “set union” type operation, where all components in the first two cells appear in the third.

62 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
may be negatively similar due to the subtraction). Thus the
same method of combining, examining similarities, and
selecting vectors that exceed a similarity threshold (positive or
negative in this case) can be used to detect the differences
between two cells.

Having detected the sets of vectors that are common and
distinct between the first two cells, it is then possible to
calculate the rule. The rule is the operation being used to
combine the first two cells, or the relative influence of the
common versus distinct set on the third cell. Since the third
cell is known in the first two rows, we can determine that
influence by calculating how similar the common/distinct
sets are to the third cell. If the common set is similar to the
third cell, that indicates that the operation is one which
preserves common items. Doing the same for the set of
differences enables the complete rule to be formulated,
expressing how the two sets are combined to form the third
cell. The answer is selected by applying the rule to the third
row. The same network is used to detect the set of common
and distinct features between cell3,1 and cell3,2, and then the
rule is used to weight each of those sets. Summing the two
weighted sets then gives a complete hypothesis for the blank
cell.

The structure of this component is shown in Fig. 9. There
are two parallel tracks: one for the items in common and one
for the distinct items. The inputs, Ai and Bi, are the first two
cells of the row. These inputs are passed through a network
that calculates the set of common (Xi) or distinct (Yi)
features. The next population calculates the inner product
(similarity) between the set vector and the third cell of the
row, Ci. The “Average” population takes the average of those
similarities across the rows. The resulting values, R1 and R2,
represent the rule giving the weight that should be placed on
the set of common and distinct features, respectively. Finally,
the set of common and distinct features are weighted by
those rule values and then summed to generate a prediction
for the third cell, Ĉi. The neural implementation of this
component is described in Appendix A.

3.6. Control structure

Each of the three neural components takes the Raven's
matrix information as input and dynamically generates the
rules that describe that matrix. That is the primary goal and
purpose of this model. However, we would also like to be able
to evaluate the success of those rules by running the model
through the RPM, combining the output of the neural
components to generate a complete rule set for each matrix
(potentially involving multiple rule types), and giving the
model a score indicating how many matrices were solved
correctly. That is the purpose of the control structure. It is not
implemented in neurons, but we have designed the controller
to conformas closely as possible to the empirical data aswell as
the biological constraints imposed by the brain. It consists
primarily of a simple system of rules that handles the input to
and output from the neural components and controls when
they run. Stewart et al. (2010) have demonstrated how such a
control mechanism can be implemented using the NEF, and
Eliasmith et al. (2012) showed how it can be combined with a
simplified version of the reasoning system presented here.
Given the significant increase in computational resources
needed to implement and simulate the controller in neurons,
we have not undertaken that step here; as discussed previous-
ly, in this work we seek to explore the more complex rule
generation systems in depth, rather than multi-component
integration. Consequently, building a neural control mecha-
nism to go with the rule generation of this model remains for
future work.

The primary reason a controller is required is that most
Raven's problems involve multiple rule types (see Figs. 1 and

Detect
Common

Items

Detect
Distinct
Items

Inner
Product

Inner
Product

Vector
Addition

Elementwise
Product

Elementwise
Product

Ci

Average

Average

Ai

Bi

Xi

Yi Ci Yi

Ci X* *

*
*

i
R1

R2

R1 Xi

R2 Yi

i

Fig. 9. Schematic diagram of the operation component. The two parallel tracks are for the common (top) and distinct (bottom) items. The first population in each
track calculates the set of features that are the same or different, respectively, between the two inputs. The second population calculates the similarity between
that set of features and the third cell in the row. The third population averages that similarity value across the rows. The fourth population multiplies the set of
common or distinct items by the average similarity value. The fifth population sums the result from the two parallel tracks to generate a prediction for the blank
cell.

63D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
3, which both involve sequence as well as set rules). Each
neural component only understands the type of rule that it is
built around; any other rules will appear as random noise.
The components can tolerate significant noise and still find
correct rules, but as more rules become involved this
becomes increasingly difficult. Thus the controller's main
job is to break the matrix down into subproblems involving
fewer rules, run the neural components on those subprob-
lems to generate all the rules for the matrix, and then use
those rules to select an overall response.

The controller follows an iterative approach to carry out
this task. It begins by giving each neural component the
complete matrix as input. If none of the components are able
to find a rule, it then breaks the problem down into simpler
matrices and sends each of those to the neural components. It
continues this process until either one of the components
finds a rule or the matrix cannot be broken down any further.
At the end of this process the components may have
generated several rules, each describing one aspect of the
overall pattern of the matrix.

In order to evaluate whether or not the neural compo-
nents have found the correct rules, the controller tests
whether those rules can be used to select the correct answer.
To do this it uses the hypotheses for the blank cell that were
returned by the neural components along with each rule. It
checks how similar each of the eight possible answers is to a
given hypothesis, indicating how well that answer matches
what the model believes should be in the blank cell.
Repeating this process for each generated hypothesis gives
a total score for each answer indicating how well it matches
the overall pattern generated by the model. This corresponds
to a common answer selection strategy used by human
subjects in the RPM, known as “response construction”
(Vigneau, Caissie, & Bors, 2006).

A potential concern is that the real work of the model is
being done by this non-neural controller, rather than the
neural components described above. However, in the next
section we will begin by showing that the neural components
can function without a controller, accurately inducing rules
and generating correct answers to matrices. The controller is
only required to coordinate the neural components on
problems involving multiple rule types. In addition, later in
the results we will perform various manipulations to the
model and examine the resulting impact on performance. All
of these changes are applied only to the neural components—
the controller is unchanged throughout. Thus the resulting
performance changes can only be attributed to the processing
of the neural components, and the corresponding discussion
and conclusions pertain to those components rather than the
coordinating role played by the controller.

4. Model experiments

There are two broad questions to be addressed with the
results from this model, corresponding to the two axes
identified in the Introduction section. First, does the model
succeed in producing complex cognitive performance—can
the model dynamically generate the rules needed to solve
Raven's matrices? Second, of what value is the model's
biologically detailed implementation—specifically, how can it
be used to better understand the causes of cognitive decline
in aging? In this section we will address each of these
questions in turn.

For those interested in recreating these experiments, or
running their own, a simplified, easy to run demonstration of
the model can be downloaded from http://models.nengo.ca/
RPMdemo. For the complete code, contact the authors. The
model requires the Nengo simulation environment to run,
which can be obtained (with installation instructions) at http://
www.nengo.ca. Appendix A describes the typical parameter
settings for the model in Table A1. Although there are many
parameters involved in a complex biological model, we do not
tune those parameters for each experiment. In almost all cases,
the parameter values are the defaults listed in Table A1. In the
discussion of the experiments we will always describe where
the parameters differ from those defaults.

4.1. Demonstrating cognitive performance

4.1.1. Experiment 1. Finding a correct solution
In this experiment we will examine data from the neural

components, without the controller, as they try to solve the

http://models.nengo.ca/RPMdemo
http://models.nengo.ca/RPMdemo
http://www.nengo.ca
http://www.nengo.ca

64 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
three matrices shown in Fig. 5. We generate one instance of
each component and run it on the appropriate matrix; it is
given a description of the matrix in VSA form as input, and
tries to generate the rule describing the matrix and a
prediction for the blank cell. As it runs we record the output
from various stages throughout the component. This will
help elucidate how the neural components generate rules, as
well as demonstrate that they can find the correct answer
using those rules.

We will begin with the sequence component. Fig. 10
shows the decoded signal from various stages throughout the
component as it attempts to solve the matrix shown in
Fig. 5(a). For a detailed explanation of how we decode a
signal from neural spikes see Appendix A, but roughly
speaking these signals can be thought of as the summed,
weighted postsynaptic current induced by the neurons in a
population, where the weights are vectors calculated to
transform the current into the VSA domain. Note that this
decoded output is only for the benefit of the reader;
internally, the model is operating completely in neural
spikes.

The signals being shown are the high-dimensional VSA
vectors as they are represented in the neural populations, so
the particular values are not meaningful to a surface viewing.
What is of interest is the general transformation of information
at each stage in the model. Fig. 10(a) shows the output of the
population representing one of the inputs (one of the two
adjacent cells for which a transformation will be calculated). In
ourmodel we present each cell for 200 ms.We take this to be a
lower bound based on the duration of fixations revealed by
eye-tracking data (Carpenter et al., 1990). However, this
parameter is not critical to the model's performance, and the
results are similar for presentation durations ranging from 100
to 900 ms. In Fig. 10(a) we can see that the signal—the VSA
representation of that cell—switches every time the model
examines a different cell. Fig. 10(b) displays the output of the
network calculating the individual transformation between
each pair of cells. Again we can see that the signal—the VSA
representation of the transformation between the two cells—
changes every time the cells change, but we can also note that
there are some overall trends to the signal. This is because
although the input cells are changing, the transformations
between those cells all have something in common, which is
the rule the component is trying to discover. Fig. 10(c) is the
output of the averaging network, representing the average of
all the individual transformations. The output of this network is
the general rule for the matrix, capturing the trends observed
in (b). Fig. 10(d) displays the convolution of that general rule
with the second last cell of the matrix (i.e., the model's
prediction for the contents of the blank cell, in VSA form).

Next we examine whether or not the sequence rule can be
used to find the correct answer. We do this by examining
how similar the component's hypothesis is to the eight
possible answers. The component will calculate the inner
product between its hypothesis and the vectors representing
the eight answers; if it has generated a correct rule, then its
hypothesis will be most similar to the correct answer. We set
up a final population to perform this calculation, and
recordings from this population are shown in Fig. 11.
Fig. 11(a) shows the output spikes from this population,
and Fig. 11(b) displays the decoded signal from those spikes.
The eight lines represent the similarity between the hypoth-
esis and the eight possible answers; the similarity to the
correct answer is shown in black. At the end of the run, once
the model has received all of its input, it selects the most
similar answer as its final choice. We can see that over time,
as the model generates a more accurate rule, the hypothesis
for the blank cell becomes increasingly similar to the correct
answer. This demonstrates that the component was able to
find the appropriate rule for this matrix.

We can do the same analysis for the set and operation
components. For brevity's sake we will only show the
comparison between the component's hypothesis and the
eight possible answers. The results of the set component
applied to Fig. 5(b) and the operation component applied to
Fig. 5(c) are shown in Fig. 12. It can be seen that each
component can find the correct answer for rules of its type. In
the next experiment we examine the performance of the
complete model combining all three components.

4.1.2. Experiment 2. Matching human performance
We now address the question of how the model performs

on the Raven's Advanced Progressive Matrices test, and how it
compares to human performance. In this analysis we generate
a population of 30 models (as opposed to the single instances
in Experiment 1), and run each model through the 36 items of
the RPM. Variation is created in the population due to the
stochastic nature of our methods: the randomness inherent in
VSAs, realistic, distributed neural properties, and heteroge-
neous neuron tuning (see Appendix A). We can then examine
how many problems, on average, the models solve correctly.
We do not expect the models to solve the RPM perfectly; in
fact, perfect performance would raise doubts as to the realism
of the model, since such performance in human subjects is
extremely rare. In first year undergraduate students, average
performance is around 22 problems (σ = 5.6) solved correctly
(Bors & Stokes, 1998). After running the experiment, the result
for our model is an average score of 18.4 problems solved
correctly (σ = 2.4). As with human performance, the suc-
cesses and failures are distributed throughout the 36 problems
of the RPM, but the model tends to perform better on earlier
problems than later (the correlation between average perfor-
mance and problem number is r = −0.41).

In this simulation the model is performing slightly worse
than the human subjects. However, we can show that this
discrepancy is a product of computational constraints, not
theoretical ones. There are twomain factors that determine the
accuracy of the model. The first is the dimension of the VSA
vectors used; the higher the dimension of the vectors, themore
accurate the VSA computations (Plate, 2003). The second is the
number of neurons used to represent those vectors; the more
neurons in the model, the more accurately it can implement
the vector level computations (Eliasmith & Anderson, 2003).
Unfortunately, increasing either of those factors increases the
computational demands of the model. Current computing
power forces us to set their levels much lower than we would
expect in the human brain. Based on neurophysiological data
such as projection ratios, cell density, and firing rates in the
mammalian cortex, and psychological data such as vocabulary
sizes, structure depth, and accuracy in human subjects,
Eliasmith (2013) estimates that humans could employ approx-
imately 500 dimensional vectors, with about 35,000 neurons

(a) (c)

(b) (d)

Fig. 10. Decoded signals from various stages throughout the sequence component. All of these signals are high-dimensional VSA vectors being represented in
neural populations; each line represents the value of one dimension of the vector (we are only displaying 10 of the dimensions in order to reduce clutter). (a) One
of the inputs, the first of the two adjacent cells for which an individual transformation will be calculated. (b) The individual transformation between the two
cells.(c) The output of the network calculating the (approximate) average of those individual transformations over time (the general rule for the matrix). (d) The
hypothesis of the model as to the contents of the blank cell.

65D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
per vector (i.e., 70 neurons per dimension). In our model we
are limited to 30 dimensional vectors, with about 900 neurons
per vector (30 neurons per dimension).

We can take some computational shortcuts, sacrificing
neural realism for faster speed, in order to investigate how the
model would perform given more realistic numbers of dimen-
sions/neurons. Our model is set up so that it can be simulated
using only the population-level dynamics, rather than individ-
ual neurons. The calculations carried out in the model are the
same, but the vector-level computations are being simulated
directly rather than simulating the neurons carrying out those
computations. This dramatically reduces the computational load
of the model, as tens of thousands of neurons no longer need to
be simulated, and these savings allow us to increase the vectors
to 500 dimensions. If we perform the same analysis—generating
a population of individuals and running them through the 36
problems of the RPM—average performance is 22.3 (σ = 1.2)
problems solved correctly, within the range we find in human
subjects. This suggests that, given sufficient computational
power, the theory of dynamic rule generation we have
developed can be used to find rules that correctly solve Raven's
matrices at least as well as human subjects. We should
emphasize that the claim here is not that the model's
performance is equivalent to humans' (for example, human
performance typically has much higher variance than the
results shown here); rather, we seek to show that the model's
performance falls within an acceptable range established by
empirical data.

Note that all results in subsequent experiments involve
the full model in which all individual neurons are being
simulated, not the simplified version used to explore
performance with 500 dimensional vectors.

4.1.3. Experiment 3. Error analysis
In addition to comparing to human correctness, we can ask

whether or not the model makes the same kinds of errors as
humans when it gets the answer wrong. Useful data in this
regard comes from Babcock (2002). In her study she classified
the 7 incorrect answers in each matrix of the RPM according to
what type of reasoning failure would cause a subject to select
each response. Her categories, based on the earlier work of
Forbes (1964), were a) incomplete correlate (IC), in which “the
individual does not identify all of the relevant variables needed
to determine the correct figure”, b) wrong principle (WP), in
which “the person's answer reflects reasoning that is qualita-
tively different fromthatwhich results in a correct solution to the

(a)

(b)

Fig. 11. Recordings from the population calculating the similarity between the
model's hypothesis for the blank cell and the eight possible answers. (a) A spike
raster—each row is one neuron in the population, and each dot is a spike from
that neuron. We are displaying only 10% of the neurons in order to make the
spikes more visible. (b) The decoded signal from those spikes. The eight lines
represent the similarity to the eight possible answers. The correct answer is
shown in black, indicating that the model has correctly calculated that answer
to be the best candidate for the blank cell.

66 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
problem”, c) confluence of ideas (CF), in which “the person does
not understand that some of the elements in the problem do not
change and are not relevant to the solution”, and d) repetitions
(RP), in which “the individual simply selects a figure that is
adjacent to the empty cell of the problem”. She then ran 818
subjects through the Advanced Progressive Matrices and
analyzed how often subjects made each type of mistake.

We can perform the same analysis on our model's
performance. Using the same classifications as Babcock, we
generated a sample population of 30 models, ran them
through the RPM test, and analyzed how often the models
made each type of error. We make some adjustments to our
standard procedure in order to better reflect the Babcock
study. As Babcock describes, subjects “were allowed 20 min
[40 min is the standard time limit] to solve as many of the
problems on the Raven's APM as possible. Although they
were encouraged to attempt the problems in the order they
were presented, subjects were allowed to omit responses to
problems without penalty in their overall score. The result of
the time limit and the instructions to the test is that not all
subjects responded to all of the problems....” The standard
behavior of our model is to not select a response if it
considers two or more choices to be equally likely, and
usually wemark a “non-choice” as incorrect. But to match the
Babcock analysis, in this case any problems where the model
did not make a choice were not penalized, and omitted from
the error analysis. In addition, because of the time restriction,
Babcock had very few subjects attempt the last 5 matrices,
and so only performed the error analysis on the first 31
problems. We therefore similarly restrict our analysis to
those matrices.

Babcock (2002) divided her data according to the ability
level of the subjects (based on their Raven's score). With an
average score of 18.4, our model falls between her medium
ability group (11–17) and high ability group (18–31). In
Fig. 13 we show the error analysis of our model population
versus those two groups of human subjects. It can be
observed that in general the frequency with which the
model makes each type of error is in line with what we
would expect given the model's overall performance, falling
in between the two groups. The only exception to this is in
regard to the repetition (RP) errors, which our model seems
to engage in more frequently than human subjects. The cause
of this divergence is uncertain; one possible explanation is
that humans have some a priori heuristic that suggests that
problem solutions are unlikely to be simple repetitions of the
question, which is lacking in the model. It is also possible that
this mismatch is not significant, and the model falls within
the expected range of human data—we cannot be sure
without the standard deviations for the human subjects.
However, we can see that in general the model's error data is
in line with the human data. This provides additional
evidence that not only does the model solve the matrices
with similar performance to human subjects, when it gets the
answer wrong it does so in a similar fashion to human
subjects.

4.1.4. Experiment 4. Examining rule generality
Next, we examine whether or not these vectors returned

by the model are truly rules. That is, it is unclear when the
model returns a rule if the model has found regularities
appropriate just to the current matrix, or if it has truly
induced general rules that could be broadly applied. For
example, there are two ways a young child might be able to
generate the answer “4” to the question “what is 2 + 2?”.
First, she could simply memorize that when she sees
the pattern 2 + 2 the answer is 4. Second, she could have
learned the general rule of addition, which can be applied to
add any two numbers. We can differentiate the two by
examining the ability of the child to generalize; can she use
the same method to solve other addition problems? If her
accuracy is much higher on problems she has already seen,
that suggests she is employing the former technique; if her
accuracy is as high on new problems as it was on old
problems, that suggests the latter. That is the test we now
apply to the rules generated by the model.

For this purpose we created a mini-RPM test with 9
problems. The first three problems are normal RPM-style
problems, one for each rule type (the three problems shown
in Fig. 5). We then created two alternate matrices for each of
those original matrices. The alternate matrices had the same
underlying rules, but different implementations of those

(a) (b)

(c) (d)

Fig. 12. Recordings from the population calculating the similarity between themodel's hypothesis for the blank cell and the eight possible answers for the set (a,b) and
operation (c,d) component.

6 Lovett and Forbus (2012) have also applied their modelling techniques
to the Evans problems.

67D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
rules (see Fig. 14). To test the model we ran it on the first
three matrices, allowing it to generate a set of rules for each
matrix. Then in order to test the generality of those rules, we
applied them, without any modification, to the two alternate
matrices. We are taking rules that were generated for one
matrix, and trying to use them to solve a matrix with the
same underlying rules but different values—analogous to
using the rule for solving 2 + 2 to solve 4 + 5. If the rules
are truly general, then they should work as well on the
alternate matrices as they do on the original matrices.

We generated a population of 30 models and ran them
through this procedure. Fig. 15 shows the difference, for each
component, between the proportion of the population that
correctly solved the original matrix (for which the rules were
generated) and the population's score when using the same
rules on different matrices. It can be seen that performance is
almost identical in the two cases. The largest change is actually
an increase of 5% for the operation component (i.e., 5%more of
the population solved the novel matrices correctly than the
original matrix). The confidence intervals indicate that none of
the changes are statistically different from zero. These results
reveal that the rules generated by the model truly are general;
they capture the abstract relationships of the data, so theywork
equally well no matter how those relationships happen to be
instantiated in a given problem.
4.1.5. Experiment 5. Performance across tasks
Another way to illustrate the generality of the system is to

apply the same model to multiple tasks. That is, if this model
contains generic rule finding abilities, then it should be able
to generate rules on tasks other than the RPM. For this
demonstration we chose the figural analogy problems from
Evans (1968), seminal work on the computational modeling
of analogy.6 We chose this task because, like the RPM, it does
not rely on linguistic abilities or background knowledge; the
problems are all expressed through transformations of
geometric shapes. However, rather than a 3 × 3 matrix, the
Evans task consists of 20 “a is to b as c is to?” analogy
problems. The Evans problems also require different specific
rules to solve, although we will show that they can be
captured by the rule generation systems of our model.

The advantage of the similarity between the two tasks is
that we can build a single model and apply it to both tasks.
We use the same vocabulary to describe the two tasks, the
same model, and all the same parameter settings. All that
changes is the input to the system, as instead of having a
3 × 3 matrix and eight possible answers, the model sees the
a, b, and c figures and five answers to choose from.

Fig. 13. Analysis of error types, comparing performance of medium ability
human subjects, high ability human subjects, and the model. IC = Incomplete
correlate, WP = Wrong principle, CF = Confluence of ideas, RP = Repeti-
tions, CR = Correct response (see text for details).

68 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
To explore themodel's performance across taskswe created
a sample population of 300 “individuals”—models with
randomly varying number of neurons (ranging between 10
and 30 neurons per dimension) and vector dimension (ranging
between 30 and 60).We then ran eachmodel on both the RPM
and Evans' analogy problems. Fig. 16 shows the distribution of
performance across the two tasks. The first observation to be
made is that the model is able to successfully solve Evans' task,
achieving performance up to 18/20 problems correct. This
reveals the power and generality of the rule generation abilities
of this model. It was not necessary to add new rules or new
abilities to themodel to solve thenew task, the systemwas able
to generate the appropriate rules based only on the new
information in the problems.

Since we are using the same model for both tasks, we can
compare the model's performance across tasks. This allows us
to begin to examine the fundamental principle of general
intelligence, namely, that individuals that performwell on one
task tend to perform well on other tasks. In general, Fig. 16
shows the trend we expect of positively correlated perfor-
mance. We are not aware of any data specifically comparing
performance on the RPM and Evans' problems; however,
Evans' problems are drawn from a larger test, the quantitative
section of the American Council on Education Psychological
Examination for College Freshmen (ACE-Q), for which data is
available. Bolin (1955) reports a correlation between the RSPM
and ACE-Q of r = 0.59, and the correlation obtained from the
data in Fig. 16 is r = 0.64 (95% confidence intervals 0.56–0.71).

This is only a basic demonstration of cross-task perfor-
mance, on two tasks that share a fairly similar structure. It
would be interesting in the future to explore performance
across a range of more diverse tasks, to begin to examine the
processes underlying the positive manifold of g. However,
this experiment serves as a demonstration of the generality
of the rule generation abilities of this model, and hints at the
value that generality can provide.

4.2. Investigating cognitive decline

Having addressed the cognitive performance of the model,
we can now demonstrate the advantages of its biologically
detailed implementation. For this we have chosen to examine
how the model can be used to explore the link between
neurophysiological changes and behavioral performance in
cognitive decline. There is a large amount of behavioral
evidence concerning how performance on these types of
complex cognitive tasks is affected by age (Deary, Whalley,
Lemmon, Crawford, & Starr, 2000; Der, Allerhand, Starr, Hofer,
& Deary, 2010; Kaufman et al., 1989; Morse, 1993; Salthouse,
2009; Tucker-Drob, 2010). There is also good evidence
concerning how brains change with age (Fjell et al., 2006;
Pakkenberg & Gundersen, 1997; Park et al., 2010; Raz et al.,
2005; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003;
Staff, Murray, Deary, & Whalley, 2006; Zarahn, Rakitin, Abela,
Flynn, & Stern, 2007). What is less clear is the link between the
two: how are the changes in the brain connected to the
changes in performance? This is much harder to establish, due
to the large number of aging factors and complex interactions
between those factors. We know that the brain changes are
linked to the performance changes, but it is difficult to establish
this empirically because we cannot manipulate the aging
factors in a controlled way. See Deary et al. (2009) and
Salthouse (2011) for detailed discussions of this issue and the
available evidence. That is the gap into which we place this
model: we will examine how the model's performance is
affected when manipulating the model in ways that recreate
the effects of aging, providing evidence for the quantitative
impact of the neurophysiological changes on performance. This
is made possible by the combination of complex cognitive
performance and biologically detailed implementation.

We investigate two of the leading theories of neuro-
physiological change associated with aging: neuron loss
and representational dedifferentiation. We chose these two
factors in particular because, as we will see, they can be
mapped onto manipulations at the different levels, VSA and
NEF, of representation in the model. Thus these factors are a
good demonstration of the different ways in which the
model can be used to explore cognitive decline, as well as
the model's ability to integrate manipulations at different
levels of abstraction.

4.2.1. Experiment 6. Neuron loss
The first aging factor we will examine is neuron loss. The

total number of neurons in the brain increases until about the
age of 20, and then from the age of 20 to 90 decreases by
about 10%—around 85,000 neurons per day (Pakkenberg &
Gundersen, 1997). Given that neurons are the primary
processing component of the brain, it is natural to suppose
that having fewer of them would be detrimental to
performance. This can be seen empirically in correlations
between brain/gray matter volume (an indirect approxima-
tion of neuron number) and performance (Narr et al., 2007;
Royle et al., 2013). However, gray matter is a very rough
measure of neuron number, and more importantly we would
like to make causative rather than correlational claims. In
other words, we would like to see that when we change the
number of neurons, performance changes in response.

This is a question that can be directly studied in our
model; as it is implemented in spiking neurons, we can
manipulate the number of those neurons and examine how
that impacts the model's performance. We generated an
initial population of 60 models with 15 neurons per

Fig. 14. Alternate matrices used in the rule generalization experiment (Experiment 4), containing the same underlying rules as in Fig. 5 but different
implementations.

69D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
dimension, ran them through the 36 items in the Raven's test,
and recorded their overall scores. We then generated
populations with decreasing amounts of neurons, and
repeated the process.7 The effect of this manipulation on
the model's average performance is shown in Fig. 17. In this
case we have ranged between 0 and 20% neuron loss,
although the Pakkenberg and Gundersen (1997) study gave
an average of 10% neuron loss throughout a lifetime. This is
because the 10% figure is for the whole brain, whereas several
studies have shown that the frontal/parietal areas most often
7 We decrease the number of neurons equally throughout the entire
model, as given the relatively small area into which our mapping places the
neural components of the model (Section 3.2) we do not have sufficient
resolution from neurophysiological aging studies to justify a more fine-
grained distinction.
associated with RPM-type reasoning are particularly affected
by neuron loss in aging (Raz et al., 2005). The latter studies
do not give specific figures for neuron loss, so we take 20% as
a rough upper bound.

There are a number of observations to be made from this
figure. First, as the number of neurons decreases, so too does
the performance of the model (r = –0.31). Second, the
performance trend shows a number of “human-like” charac-
teristics not captured in previous models: a range of
performance at each point, and graceful degradation across
the manipulation. The former is a result of the stochasticity of
VSAs and biologically detailed NEF modeling, and the latter is
made possible by the distributed (at both the vector and
neural level) nature of our representations, allowing the
system tomodel subtle changes rather than adding/removing
entire symbolic components. Third, the performance loss is

Fig. 16. Scatter plot of individual models' scores on the RPM and Evans'
analogy problems. The size of the circles indicates the number of individuals
falling into each data point, since many of them overlap, and the dashed line
indicates the best linear fit to the data.

Fig. 15. Testing the generality of the generated rules by applying them to
novel matrices. Displaying the difference between the proportion of the
population that gave the correct answer on the matrices for which the rules
were generated and the population's score when applying the same rules to
novel matrices, with 95% confidence intervals. These results demonstrate
that the model learns rules that generalize to novel matrices.

70 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
less than that observed in aging human subjects (typically
around 8 fewer matrices solved correctly between young and
old age — Babcock, 2002; Salthouse, 1993). One explanation
of this difference is the point mentioned above: effects
measured in human subjects are a conglomeration of many
neurophysiological changes (neuron loss, demyelination,
connectivity loss, etc.), whereas in this experiment modeling
has allowed us to isolate the effects of a single aging factor.
This is interesting, as it suggests that the model, and perhaps
the human brain, can tolerate significant amounts of neuron
loss (in isolation) without dramatic performance declines.8

After exploring the next aging factor we will examine how
the factors combine to impact performance, as they do in
human subjects.

We can also examine how the model's performance
changes with respect to the three different rule types. We
find that performance on matrices involving a set rule drops
the most (16% decrease in performance), then operation
matrices (11% decrease), and then sequence matrices (5%
decrease). This suggests that the set component is most
sensitive to neuron loss, followed by the operation compo-
nent and the sequence component. However, this is compli-
cated by the fact that the performance of the components is
interrelated, especially because many matrices involve
multiple rule types. A complete analysis of this issue would
require a much more thorough investigation than we seek to
undertake here, but this result presents an interesting
8 However, note that the losses associated with aging are gradual, and so
the brain has time to adjust and compensate for these losses as best it can
(Fjell et al., 2006). This is represented in the model by recalculating the
synaptic connection weights between populations after decreasing the
number of neurons. If we do not include this compensation mechanism, then
performance loss is much more severe (around 75–90%). This could be
likened to measuring RPM performance immediately after sudden brain
injury, such as from trauma or stroke, delivered to the whole Raven's
reasoning mechanism. That is not the focus of this work and so we make no
strong claims on these results, they are simply intended to illustrate the
effect of the compensation.
suggestion of other potential explorations made possible by
this model.
4.2.2. Experiment 7. Representational dedifferentiation
The second aging factor we investigate is the neural

dedifferentiation hypothesis. This is the idea that older brains
do not represent different concepts as distinctly as younger
brains. Studies providing evidence for this effect involve
scanning subjects using fMRI while they observe different
categories of images (Park et al., 2004, 2010) or hold different
concepts in working memory (Payer et al., 2006; Zarahn et al.,
2007). This makes it possible to estimate how “distinctly”
subjects are representing concepts by measuring the degree to
which different concepts result in different neural activation
patterns. In all cases the finding is that distinctness is
negatively correlated with age; as subjects get older, they
begin to blend their representation of different concepts. In
addition, Park et al. (2010) find this dedifferentiation to be
particularly correlated with the age-related decline in fluid
processing ability, the primary ability associated with tasks
such as the RPM.

We can apply this result to our model by manipulating the
dimension of the VSA vectors. Recall that in Fig. 2 we showed
that in order to represent more vectors in a vocabulary while
maintaining an upper bound on the similarity between those
vectors, we need to increase the dimension of the vectors in
the vocabulary. This is equivalent to saying that in order to
make the vectors in the vocabulary more distinct, we need to
increase their dimension. Thus the aging process, in which
neural representations of different concepts become less
distinct, can be modeled by decreasing the dimension of the
VSA vectors. Note that neuron loss will also have the effect of
decreasing the accuracy of representation (among many
other effects), thus the two manipulations are related.
However, the question being addressed here is whether
changes applied only at the level of vector representation,
independent of any other changes, can account for aging
effects. We measure the “differentiability” of a vocabulary of
vectors by calculating the average proportion of vectors that

Fig. 18. Result of increasing vocabulary vector similarity on performance,
with 95% confidence intervals. Vocabulary similarity is measured as the
average percentage of the vocabulary that exceeds a fixed similarity
threshold to any given vocabulary item.

Fig. 17. Result of decreasing number of neurons on the model's overall
performance (the number of Raven's matrices solved correctly out of a
possible 36). Displaying 95% confidence intervals.

71D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
are more than 30% similar to each vector in the vocabulary
(the particular percentage is not important, it simply
establishes a consistent threshold). This can be thought of
as the average proportion of the vocabulary that could be
confused with any particular vector. Thus as we decrease the
dimension of the vectors, the proportion of confusable
vectors increases.

Again we simulate this process by generating an initial
population of 60 models (with 30 dimensional vocabulary
vectors), analyzing their performance, and then repeating the
process in populations with decreased vocabulary dimension.
The result of this manipulation is shown in Fig. 18, where it
can be seen that decreasing distinctness of representations
leads to decreasing performance (r = −0.59). Note that
unlike with neuron loss we do not have quantitative
measures of the degree to which specificity changes with
aging, and so we cannot be as exact about the range of the
manipulation as we were in Experiment 6. However, what
we can say is that dedifferentiating neural representations
directly results in declining performance.

The next question we can ask is how these factors
interact; when subjects both lose neurons and begin
representing concepts less distinctly, as likely happens in
true aging brains, how does that combination impact
performance? For this we carried out a 2 × 2 ANOVA with
neuron number and vector dimension at pre- and post-aging
levels (post-aging defined as the maximum range of the
manipulations applied in the previous experiments). The
result was that although both neuron number and vector
dimension were significant (p b 0.05), their interaction was
not. This suggests (although not conclusively) that these two
aging factors combine in a simple additive fashion; this could
be due to the related nature of the neuron loss and
dedifferentiation manipulations, as mentioned earlier, or
indicate that they represent two distinct and independent
mechanisms. We are not aware of any studies investigating
the combined effect of neuron loss and representational
dedifferentiation, and so this represents a prediction from the
model. This analysis demonstrates an advantage of the
modeling methods we have employed: we are able to
combine the manipulations from the two levels of represen-
tation—neural and VSA—in the performance of one model,
enabling us to examine the multiple levels of change present
in human subjects.

4.2.3. Experiment 8. Aging error patterns
We can also examine how the model's error patterns

change with age. For this we return to the analysis from
Experiment 3, using the data of Babcock (2002). Babcock
analyzed the error patterns of her subjects divided into
young (18–30), middle-aged (31–59), and elderly (69–90)
groups. Thus we know how error patterns on the RPM
change in human subjects, and we can compare that to how
the model's performance changes under the two aging
manipulations.

Just as in Experiment 3, we created a sample population of
30 models, ran them through the RPM, and analyzed which
errors they made. As an approximation of the young,
middle-aged, and elderly groups used by Babcock, we created
populations at the lower, middle, and upper end of the
manipulations described in Experiments 6 and 7. The compar-
isons between the human andmodel data are shown in Fig. 19.
It can be seen that the model follows the general trends of the
aging humans. As we would expect based on the results of
Experiments 6 and 7, themagnitude of the changes are smaller
under the neuron loss manipulation. Unfortunately we cannot
statistically compare the fit of these different manipulations to
the human data, as the variance of the human data is not
available, so it is difficult to make strong claims based on these
results. However, this experiment serves to illustrate the value
of combining complex cognition and biological detail, which
allows us to link low level neurophysiological changes to high
level variables such as error patterns.

4.2.4. Experiment 9. Individual differences in aging
In this experiment we look at how this model can address

individual differences and their trends in cognitive decline.
Longitudinal and cross sectional studies have provided anumber
of results on how performance changes in an aging population.
Mean population performance decreases (Salthouse, 2009),
which is unsurprising given that individual performance tends
to decrease. More interestingly, aging populations also show an
increase in the variance of performance (Morse, 1993). Finally, a

(b)

(c)

(a)

Fig. 19. Comparison between (a) aging human error patterns, (b) model
errors when manipulating neuron number, and (c) model errors when
manipulating representational distinctness. Displaying 95% confidence
intervals for the model data. IC = Incomplete correlate, WP = Wrong
principle, CF = Confluence of ideas, RP = Repetitions, CR = Correct re-
sponse (see Experiment 3 for details).

9 We did investigate the effect of changing vector dimension, and the
results differed in magnitude but had the same trends as those reported
here.

Fig. 20. Histogram of population performance before and after aging. The
aged population shows a downward shift in performance, as well as greater
variability.

72 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
consistent result is that despite these decreases in average
performance and increases in variance, relative performance of
individuals in the population is fairly well preserved (Deary et
al., 2000); in other words, a subject first in his cohort at age 20
will likely still be at (or near) the top of his cohort at age 80. The
question we want to answer is whether or not a set of models
displaying individual differences will follow these same trends
when we simulate the aging process.

For this analysis we generate a sample population of 300
individuals. These individuals are generated by creating
models with randomly varying number of neurons (ranging
between 10 and 30 neurons per dimension) and vector
dimension (ranging between 8 and 22), establishing a range
of initial ability. This is consistent with empirical work
demonstrating that individuals vary in neuron number and
representational specificity, and that those differences corre-
late with reasoning ability (Narr et al., 2007; Park et al.,
2010). Note that we do not mean to suggest that such a
simplistic manipulation completely accounts for the complex
individual differences observed in humans. Rather, we want
to show that these factors can create a range of individual
ability, and examine how those individual abilities change
with age. For an example of a different exploration of
individual differences based on working memory, see
Appendix C, or for the impact of changes to the control
structure see Rasmussen and Eliasmith (2011).

We next age the entire population by decreasing the
number of neurons in each individual by 20%. We have
chosen to manipulate only the number of neurons in the
aging process, rather than including vector dimension,
because as mentioned earlier we do not have good data on
the degree to which representational specificity changes with
age. This makes it difficult to manipulate the two variables in
parallel, because we do not know what degree of specificity
change is appropriate for a given loss of neurons. To keep the
results as clean as possible, we manipulate only the variable
for which we have good data in this analysis.9

The pre- and post-aging performance distribution is
shown in Fig. 20. Note the characteristic normal distribution
of performance in the initial population, and its downward
shift and “flattening” after aging. In Fig. 21 we have plotted
both the mean and coefficient of variation (standard devia-
tion divided by the mean) of the population relative to the
proportion of neurons lost. This demonstrates exactly the

Fig. 21. Mean and coefficient of variation of population performance with
aging. Aging corresponds to decreasing average performance and increasing
variation, consistent with data from human populations.

73D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
trends described in the empirical research: decreasing
average performance and increasing variance. Next we can
examine the performance ranking of the individuals in the
pre- and post-aging population. We find that the two
rankings are moderately correlated, Spearman's ρ = 0.61
(r = 0.58 for the raw scores). This is consistent with human
data, which shows correlations between the performance
rankings at young and old age ranging between approximate-
ly 0.5 and 0.8 (Deary et al., 2000). As with all of the analyses in
this section, these behavioral results are not new; it was
already known that as a population ages we see performance
decreases, variability increases, and relative ranking remain-
ing consistent. What is new is the connection between
neurophysiological changes and performance changes—we
have shown that those known behavioral results can be
directly explained by changes in the underlying neurophys-
iological variables.

5. Discussion

We began by arguing for the importance of models that
combine complex cognitive performancewith biological detail.
The previous section presented a broad range of results, in
order to investigate both of these issues. Here we will
summarize those results, as well as discuss what they reveal
concerning the advantages and disadvantages of both the
model presented here and this style of modeling in general.

With respect to the cognitive performance of the model,
we have shown that the model is able to dynamically
generate the rules that describe a Raven's matrix using
networks of spiking neurons. We demonstrated that the rules
it generated could be used to solve Raven's Advanced
Progressive Matrices with similar performance levels to
those observed in adult human subjects. By analyzing error
patterns, we demonstrated that not only does the model
achieve similar performance, when it fails in its reasoning it
does so in a similar fashion to human subjects. We showed
that the rules generalize to novel matrices, indicating that the
model has correctly extracted general principles describing
the matrix. And finally, we demonstrated that the same rule
generation mechanisms can be applied across tasks.

The key cognitive feature of this model is its ability to
dynamically generate rules describing patterns in its inputs,
in a manner compatible with human performance and
without relying on prior information. Previous models of
Raven's problem solving have had difficulty accounting for
the inductive generation of rules, thus the development of
such a model is an important addition to our theoretical
understanding of the RPM. In addition, this dynamic rule
generation is a fundamental ability in not only the RPM but in
a broad range of cognitive tasks—everything from visual
pattern recognition, to syntactic processing, to empirical
induction. The specific implementation of the system we
have developed is designed for the structure of RPM
problems, but the rule generation computations do not
depend on that structure. All of the processing is based on
the representations of Vector Symbolic Architectures, and
implemented using the general mechanisms of spiking
neurons. In the case of the RPM these VSA representations
were used to describe the cells of the matrix, but they could
also be used to describe parts of a sentence or lists of factual
observations. Regardless of the underlying information
described by the representations, the same processes can be
used to extract rules describing the patterns in that
information. Thus the dynamic rule generation system used
in this model can be employed in other contexts and used to
help understand a broad range of cognitive tasks.

It is important to note that this model complements
rather than supersedes previous work; other models have
strengths in other areas, and benefit from this available
explanation of rule generation just as this model benefits
from their work in domains such as visual processing. The
work of Lovett et al. (2010) on automated relationship
extraction and correspondence detection, and that of Kunda
et al. (2013) on non-propositional representations, both
tackle important aspects of RPM performance that are not
captured by this model. We may look forward in the future to
systems that combine the strengths of these different
approaches into a unified model of these complex problem
solving abilities.

One possible concern is that by building different rule
generating components into the system (described in the
Model architecture section), the model is subject to the same
concern expressed in regard to previous models—that too
much information is being built in by the modelers. In other
words, could an analogy not be drawn between the rule
generation components of our system and, for example, the
rule productions of the Carpenter et al. (1990) model? The
distinction between the two lies in the difference between
induction and recognition. In our model, each rule compo-
nent represents a general process that can generate any rule
(of its respective type) that can be represented in VSAs. The
components do not compare the inputs to known patterns,
they generate each pattern from scratch based on the data
they are given. For example, the sequence component takes a
set of vectors as input, and generates a rule built only from
the content of those vectors—it does not have access to any
external information about what kinds of differences be-
tween cells correspond to what kinds of sequences. In
addition, our rules are not restricted to the problem type of
the RPM (geometric shapes in a 3 × 3grid); any information
that can be represented in VSAs could be analyzed by these
rule-finding systems (see Experiment 5 and Eliasmith et al.
(2012) for demonstrations of the same mechanisms being
applied to solve several different tasks).

Table A1
Main parameters of the model with default values.

Parameter Value Description

Vector dimension 30 Dimension of VSA vectors
Neurons per dimension 25 Number of neurons per VSA

dimension
Vocabulary seed – Random seed for generating

vocabulary
Correctness threshold
(sequence/set/operation)

0.7/0.9/0.8 Minimum score indicating a
correct rule has been found

Step size 0.2 Length of time (in seconds)
to present each input

Vector similarity 1.0 Maximum similarity allowed
in vocabulary

Similarity threshold
(same/distinct)

1.0/0.9 Threshold to detect same/
different features

Answer threshold 0.0 Minimum difference required
to differentiate matrix answers

τRC 0.02 Leak rate of LIF neuron
τref 0.002 Refractory period of LIF neuron
Max firing rate 200–500 Maximum firing rate of

neurons
τPSC 0.007 Decay of post-synaptic current
Learning rate 0.4 Scale on input to averaging

integrator
Forget rate 0.2 Rate at which information is

lost in averaging integrator

74 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
Another key feature of this model is its biological basis. A
computer program that can generate RPM rules computation-
ally is interesting fromanAI perspective, and canprovide insight
into high-level aspects of human performance, but it is limited
in its ability to help us understand the inner workings of human
cognition. That is why we use the Neural Engineering Frame-
work to implement the model in biologically detailed networks
of spiking neurons. This step serves two main purposes. First, it
grounds the model in empirical data. By implementing the
computations of the model in neural behavior, we ensure that
those computations actually could be carried out by the hard-
ware of the brain. The second advantage of the neural imple-
mentation is the ability to compare the results of the model to a
broader range of human data. For example, in Experiments 6, 8,
and 9 we were able to directly compare the neuron loss in
human aging with neuron loss in the model, and in Experiment
7 we were able to combine those low-level neural manipula-
tions with manipulations suggested by higher level fMRI data.
Explorations such as this are only possible if a biologically
detailed implementation is a fundamental feature of the model.

That being said, there are some important limitations to this
model. This is a model of a specific aspect of cognition, dynamic
rule generation,which is just oneof the abilities needed to solve
a Raven's matrix. Other abilities are equally important and
challenging problems, but are not part of thismodel (e.g., visual
processing) or are notmodeled in the same neural detail as rule
generation (e.g., the control system). This means that we must
be careful when interpreting the model's results. The complete
brain in a human solving a Raven'smatrix is a farmore complex
system, which has far more dynamic and flexible performance,
than this model. As our understanding of these other systems
(and available computing power) increases, we will be able to
build increasingly complex models that better capture the
complete range of abilities in a given task. However, because
this model is implemented in the general language of neural
behavior, its features can be integrated into a more complete
model without changing this model's fundamental implemen-
tation (as demonstrated in a simplified form by Eliasmith et al.,
2012). Thus while a more complete model would better
capture the full spectrum of human performance, we suspect
that it would still include the features central to this model.

With respect to the neural basis of intelligence, we have
used the specific domain of cognitive decline to demonstrate
the potential insights that may be gained from a cognitively
complex, biologically detailed model. Complex cognition has
allowed us to examine performance on a difficult, real-world
reasoning task (Raven's Advanced Progressive Matrices), while
biological detail has allowed us to recreate neurophysiological
changes observed in aging (neuron loss and representational
dedifferentiation). We have demonstrated that these manipu-
lations result in similar cognitive changes as those observed in
aging human subjects, from raw performance to error patterns
to individual differences. Note that we do not mean to suggest
that these two factors account for all of the cognitive changes
observed in aging. This model could be used to investigate
many other aspects of aging, such as dendritic shrinkage (by
eliminating incoming projections to the model neurons), loss
of connectivity (by cutting connections between different
neural populations), reduced neurotransmitter efficiency (by
decreasing connection weights or introducing probabilistic
firing), or pathologies such as Alzheimer's (containing a
combination of factors). We chose the factors presented in
this work because they are well-suited to demonstrating the
value of models combining complex cognition with biological
detail, through themodel's capacity to empirically examine the
links between neural processes and cognition.

In sum, the present model suggests novel, neurally
plausiblemechanisms for central aspects of complex cognition.
We have demonstrated that these mechanisms are consistent
with human cognitive performance, and how they can be
manipulated to explore the functional impacts of neurophys-
iological changes. In general, models of this type arewell suited
to unifying our neural and cognitive characterizations of
complex human behavior. While the present model is only an
initial step in that direction, the general methods employed
here should allow us to continue to extend such models to
capture an increasingly broad range of relevant neural and
cognitive phenomena.

Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, CFI/OIT, Canada
Research Chairs, and the Ontario Ministry of Training,
Colleges, and Universities.

Appendix A. Neural implementations

A.1. The Neural Engineering Framework

VSAs allow us to represent and manipulate the informa-
tion in a Raven's matrix at an abstract mathematical level,
but we also want to implement those representations and
operations at the neural level. The NEF provides a general
framework for translating high level variables and operations
into the activity of and connections between large networks
of biologically plausible spiking neurons (Eliasmith &

75D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
Anderson, 2003). In our model we use this framework to
represent the VSA vectors and carry out the VSA operations
(binding and superposition) on those vectors.

The NEF represents information in a distributed manner,
using the combined information from a population of
neurons to represent a value (in this case, the VSA vectors).
There are two important components to representation.
The first is encoding a value into spikes—transforming the
information contained in the input into the activity of
the neurons (a to b in Fig. A1). The second component is
decoding spikes into a value (c to d), so that it is possible for
the modeler to interpret what information is being repre-
sented by the population.

Encoding a vector x(t) (all computations occur over time, t)
into the spike train of neuron ai is accomplished through a
neuron model

ai x tð Þð Þ ¼ Gi αieix tð Þ þ Jbiasi

h i
ð4Þ

which describes the activity of neuron ai as a function of its
input current. Gi is a function representing the nonlinear
(a)

(c)

Fig. A1. Recordings from a simple network in which an input signal (a) is fed in
connected to a second population (c), with the connection weights calculated to
population is decoded back into a value (d). Note: b and c are spike rasters; each ro
spike at that time.
neuron characteristics. It takes a current as input (the value
within the brackets), and uses a model of neuron behavior to
output spikes. In our model we use leaky integrate-and-fire
neurons, which strike a balance between computational
simplicity and realistic neural dynamics. However, this
formulation allows any neuron model to be substituted for
Gi, so the neuron dynamics can be made as simple or detailed
as desired without changing the overall model. The variables
αi, Jibias, and ei are the parameters of neuronαi. The parameters
αi and Ji

bias do not directly play a role in the encoding of
information, but rather are used to provide variability in the
firing characteristics of neurons. This allows the modeler to
capture the heterogeneity observed in biological neurons. The
parameter ei represents the neuron's preferred stimulus—
which inputs will make it fire more strongly. This is an
important factor in the neuron's firing, as it differentiates
what properties of the input a neuron will respond to.
Specifically, the dot product between ei and the input (i.e.,
their similarity) drives a particular cell. In summary, the
activity of neuron ai is a result of its unique response
(determined by its preferred stimulus, ei) to the input x(t),
passed through a nonlinear neuronmodel in order to generate
(b)

(d)

to a population of simulated spiking neurons (b). That population is then
double the represented value. Finally, the spiking activity of the second

w corresponds to one neuron, and each dot indicates that the neuron fired a

10 This does not mean that the connection weights could not be learned
instead; calculating them analytically simply allows us to skip the lengthy
training process. For a demonstration of using a realistic spiking neural
learning rule to achieve the same result, see Bekolay & Eliasmith (2011).

76 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
spikes. This characterizes the encoding of a signal (e.g., a VSA
vector) into neural spikes.

The second, equally important, part of neural representation
is the reverse process: decoding the activity of a population into
a value, x̂ tð Þ. This is accomplished through the formula

x̂ tð Þ ¼
X
i

h tð Þ � ai x tð Þð Þdi ð5Þ

where * denotes standard (not circular) convolution. Essential-
ly this is modeling the unweighted current that would be
induced in the post-synaptic cell by the spikes coming out of ai
(we will discuss how the synaptic weights are determined
shortly). The ai(x(t)) are the spikes generated in Eq. (4). The
function h(t) is a model of the post-synaptic current generated
by each spike; convolving that with ai(x(t)) gives the total
current generated by the spikes from ai. The di parameters are
the optimal linear decoders,which are calculated analytically so
as to provide the best linear representation of the original input
x(t). The equation for determining the decoders is as follows:

d ¼ Γ−1ϒ

where

Γ ij ¼ ∫ai xð Þaj xð Þdx
ϒ j ¼ ∫aj xð Þ f xð Þ dx:

ð6Þ

The variable ai(x) denotes the average firing rate of neuron ai
given input x. Note that in this case the temporal aspect, t, has
been removed. This is because only the average firing rate of the
neuron for a given input is used, rather than the specific timing
of the spikes. However, because the two measures (firing rate
and spike timing) arise from the same neuron model, the
decoders calculated based on rates can be applied in the
temporal case. The function f(x) is the operation to be
performed on the represented value; if the goal is to decode
the value represented by the population without modification,
as is usually the case, then f(x) = x. For the mathematical
derivation showing the optimality of the resulting decoders, see
Eliasmith and Anderson (2003).

Roughly speaking, the decoders can be thought of as creating
a mapping from the output current onto the input value that
created that output. Since the input was transformed into
current using the nonlinear neuron model, it is impossible to
recreate the input perfectly using linear decoders. Thus the
resulting value is an approximation, x̂ tð Þ, of the original input,
x(t). That is why we use large populations of neurons, with
heterogeneous properties—so that the combined activity of all
the neurons in the population “balances out” the inaccuracy in
any oneneuron. Given enoughneurons it is possible to get a very
accurate recreation of the original input; for a detailed analysis
of the link between population size, neuron properties, and
representational accuracy, see Eliasmith and Anderson (2003).

In addition to representing VSA vectors, we also need to
carry out transformations—the VSA operations—on those
vectors. We will examine several different types of transfor-
mations, and then demonstrate how they can be combined to
support all the calculations required to implement VSAs.

The first transformation is a scale on the input (e.g.,
calculating y = 2x). Assuming that there are two populations
a and b which will represent the x and y values, respectively,
then this amounts to a question of how to set the weights on
the synaptic connections between a and b. Referring back to
Fig. A1, the connection weights between the two populations—
1(b) to 1(c)—is what needs to be determined. The goal is to set
theweights in such away that when the neurons in population
a are firing to represent x, this will cause the neurons in
population b to fire in such a way that they represent 2x. Recall
that the spiking of neuron bj is a result of its nonlinear response
(Gj) to the input current. However, the input to population b is
no longer a direct value, but is instead the output from
population a. The output of population a is given by Eq. (5), so
to calculate the firing of population b, Eq. (5) can be substituted
in for x(t) in Eq. (4):

bj x tð Þð Þ ¼ Gj α je j

X
i

h tð Þ � ai x tð Þð Þdi
 !

þ Jbiasj

" #

¼ Gj

X
i

h tð Þ � ai x tð Þð Þα je jdi þ Jbiasj

" #

¼ Gj

X
i

h tð Þ � ai x tð Þð Þωji þ Jbiasj

" #
:

ð7Þ

In other words, the input current of neuron bj is equal to the
output current of all the a neurons connected to bj, multiplied
by the connection weights. In most neural simulations the
connection weights, ω, need to be learned. The NEF formula-
tion allows the connection weights to be analytically deter-
mined: ωji = αjejdi.10 Referring back to the descriptions of the
variables in Eqs. (4) and (5), what this means is that the
connection weight between neurons ai and bj is equal to the
preferred stimulus of bj multiplied by the decoders for ai (all
scaled by the gain, αj, on bj). So far the value has not actually
been transformed, the output of a is simply being passed
directly to b. In order to calculate the transformation y = 2x,
the connectionweights aremultiplied by 2:ωji = 2αjejdi. More
generally, if we want to multiply the vector x by the matrix C,
we can calculate the weights as ωji = αjejCdi.

The second transformation is combining two values
(z = x + y). This is almost identical to Eq. (7), except that
now the input current is coming from two populations
instead of one:

ck x tð Þ þ y tð Þð Þ ¼ Gk

X
i

h tð Þ � ai x tð Þð Þωki þ
X
j

h tð Þ � bj y tð Þð Þωkj þ Jbiask

2
4

3
5

ð8Þ
where ωki = αkekdi and ωkj = αkekdj. A second, analogous
term has been added to incorporate the second input
population. This can be continued in the same way to
combine any number of inputs.

The final step is to combine the previous two elements to
compute arbitrary transformations of the form z = C1x + C2y.
This is simply Eq. (8), except ωki = αkekC1di and ωkj =
αkekC2dj. Thus with these techniques any linear transforma-
tion can be computed using simulated spiking neurons.

77D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
Notice that the linear transformation discussion has been
solely about encoding from value to spikes, there has been
no discussion of decoding from spikes to values. This is
because the decoding is unaffected by these linear transfor-
mations. Recall that the optimal linear decoders map from
output current to the input value that caused that current.
These manipulations are only changing the input—the
mapping remains the same. However, it is also possible to
compute different mappings, by setting f(x) to different
functions in Eq. (6). This makes it possible to approximate
nonlinear functions such as multiplication. Multiplication is
particularly relevant for VSAs, because circular convolution
is based on the multiplication of vector elements (see
Eq. (1)).

There are a number of methods to perform multiplication
(z = xy) using spiking neurons (Eliasmith & Anderson, 2003;
Polsky,Mel, & Schiller, 2004). Herewe employ a technique that
uses only linear dendrites, as this is the most conservative
assumption regarding dendritic computation. With this ap-
proach, multiplication involves a two stage process, using an
intermediate populationM. TheM populations takes x and y as
input and combines them into a two dimensional valuem = [x
y]. This is a linear transformation, and so is accomplished as
described above. The decoders of M, instead of mapping onto
the same two dimensional space as the input, map onto a one
dimensional space by setting f(m) = m1 × m2 in Eq. (6).
Whereas before the decoders were used to directly translate
output current into the value that caused that current, now
they are adding a transformation to that translation. The
decoders are still only linearweights and so only approximate a
nonlinear transformation such as multiplication, but they can
do so sufficiently well for our purposes (the accuracy of the
approximation is proportionate to the number of cells, so the
multiplication could be made arbitrarily accurate given an
increasing number of cells). Together with linear transforma-
tions, these nonlinear approximations are sufficient to carry
out all of the VSA operations.
I
T

f

i+1

Fig. A2. Schematic diagram of the neural population implementing averaging
(Eq. (9)). Thepopulation receives two inputs: the current transformation (Ai′ ⊛ Bi)
and the overall transformation from the previous timestep (Ti, delivered through
the recurrent connection). These inputs areweighted by the scaling factors l and f,
respectively. The population sums these two inputs, calculating Ti + 1, the new
overall transformation.
A.2. Sequence component

There are two primary computations in the neural imple-
mentation of this component (see Fig. 6): calculating the
transformation between two cells (i.e., calculating A′ ⊛ B), and
averaging across those transformations. The key aspect of the
first computation is performing circular convolution, as
calculating the pseudoinverse (A′) is a linear transformation
(see Eq. (2)). Circular convolution (Eq. (1)) is a complex
operation with a large number of nonlinear operations
(multiplication), but it can be made much simpler by noting
that it is equivalent to an element-wise product in the
frequency domain (Plate, 2003). Thus we can compute the
circular convolution of two vectors by transforming those
vectors into the frequency domain using a Discrete Fourier
Transform (DFT; a linear operation, and so performed in
neurons via Eq. (7)), calculating the element-wise product
(using the multiplication method described above), and then
transforming the result back using the inverse DFT. This
dramatically reduces the number of multiplications that need
to be performed, allowing for a sufficiently accurate imple-
mentation of circular convolution in spiking neurons.
The next challenge is averaging the individual transforma-
tions. The standard way of calculating an average is to sum all
the items and divide by the number of items being averaged.
However, this assumes that all those computations are
occurring simultaneously and instantaneously. In a real brain
this is not the case; computations are occurring over time, thus
the system needs to remember the results of previous
calculations and combine them with new results. Therefore
we instead use a running average; as each new transformation
is calculated for a given pair of cells, it is used to update a stored
value so that over time the stored value approaches the average
of its inputs. This is expressed by the formula

Tiþ1 ¼ f Ti þ l A′
i ⊛ Bi

� � ð9Þ

where Ti is the average of the first i transformations, f is the rate
at which previous information is forgotten, and l is the
emphasis placed on new information. If we set f = 1 − l and
x = 1/(i + 1) then this formula calculates an exact average.

We implement this formula in neurons by using a
modified integrator. An integrator is a population of neurons
with recurrent connections to itself that when given no input
will maintain its current value over time, acting like working
memory (Eliasmith, 2005). In this case we use the integrator
to represent the Ti values—the running average of the
individual transformations calculated by the circular convo-
lution network. A basic integrator simply sums its inputs
rather than averaging them, so we modify the integrator by
adding a scale to the input (l) and causing it to constantly
forget past information (f). Fig. A2 shows how Eq. (9) maps
onto the components of the integrator. As mentioned,
calculating an exact average requires setting l = 1 / (i + 1)
—in other words, changing the values of l and f as each new
item is presented. In the integrator, this would require very
fast and accurate changes on many neuronal connections.
This is not biologically plausible, so instead we pick fixed
values for l and f that approximate a true average. This
results in a less accurate average, but it is a more plausible
mechanism and, because the values being averaged have
significant noise anyway, is not a critical impediment to
performance.

Once all the individual transformations have been calcu-
lated and input to the integrator, the value stored will be the
average rule for the whole matrix. This value is then

11 This has been shown to scale to adult-sized vocabularies by Stewart et al.
(2011).
12 In the system to detect distinct features the similarity can be
negative due to the subtraction, and so the function is changed to

f xð Þ ¼ jxj : jxj≥ threshold
0 : jxjbthreshold

�
.

78 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
convolved with the vector for the second last cell (cell3,2).
This is done using an identical circular convolution network
as was used to calculate the individual transformations, but
without the pseudoinverse. The resulting value is the
component's hypothesis as to the contents of the blank cell.

A.3. Set component

The set component is similar to the sequence compo-
nent in that in both cases the system needs to calculate
several particular pieces of information and then average
across them (see Fig. 7). In the sequence case the
particular information was the transformation between
two cells, in this case it is the superposition of the three
cells in a row.

Recall that in the Holographic Reduced Representation
(Plate, 2003) implementation of VSAs, superposition is
simply vector addition. We implement this at the neural
level by having a population storing each of the values we
want to sum (the vector representation of each of the three
cells in the row). We then combine the output of these three
populations into a single population using Eq. (8), which will
then be representing the sum of its inputs—the set represen-
tation for those three items. The averaging is then performed
in exactly the sameway as it was in the sequence component,
using a working memory-like population. The result is that
the population will be storing an average of the two row sets,
which is the general set rule for the matrix.

To select an answer we use twomore populations storing
the vectors for the two known cells in the third row,
combined with the integrator population storing the overall
rule. We then connect those three outputs to a final
population in the same way as we did for the initial
summation, except that we scale the output of the first two
populations by −1 (Eq. (7)). The result is that the final
population will receive as input the overall matrix set minus
the two known cells in the third row, and thus will be storing
the remaining items in the set—the contents of the blank
cell.

A.4. Operation component

The operation component consists of two parallel sys-
tems: one to work on the set of common features, and one to
work on the set of distinct features (see Fig. 9). The two
systems are nearly identical, so we will describe only one of
them and point out any differences.

The neural calculations begin with the formation of the
combined vector representing either the summation or
subtraction of the first two cells (to calculate the common
or distinct features, respectively). This is a matter of
combining the input from two populations as in Eq. (8); to
perform the subtraction, one of the populations' output is
scaled by −1.

After forming the combined vector, the next step is to
perform the similarity calculations—determining the inner
product of the combined vector and each of the vectors in the
vocabulary. This is done in our model by creating a neural
population to represent each vector in the vocabulary. Each
population then calculates the inner product (a linear
transformation) between the vector it represents and its
input, the combined vector.11

The key aspect of determining the set of combined/distinct
features is the thresholding. This acts as a gate on the output of
the vocabulary vector populations, so that any population
whose calculated inner product does not surpass the threshold
has an output of zero. This is a nonlinear operation, and so is
performed by modifying f(x) in the decoder calculations
(Eq. (6)). We set f(x) to be the step function12

f xð Þ ¼ x : x ≥ threshold
0 : x b threshold

:

�
ð10Þ

The result is that populations will output zero when the
similarity is beneath the threshold, and the vector they
represent when the similarity exceeds the threshold. The
outputs of all the vocabulary populations are then combined
into a single population. The populations with zero output
effectively contribute nothing, so the result is that the output
population represents the sum of all the vectors whose
similarity exceeded the threshold. In other words, the popula-
tion represents the set of features that have been determined to
be common (or distinct).

Having calculated the set of common or distinct features
between the first two cells of the row, the next step is to
determine the similarity between the common (or distinct)
features and the third cell, in order to generate the rule.
Recall that similarity is defined as the inner product of the
two vectors, which we calculate by taking the element-wise
product (using the multiplication method described in the
discussion of the NEF) and then summing across the
dimensions of the result (a linear operation). The rules are
then averaged across the rows using the same integrator
averaging method described in Fig. A2 to create a general rule
for the whole matrix.

The final step is to generate a hypothesis for the blank cell.
To begin, the set of common/distinct features for the first two
cells of the third row are calculated using the system
described above. The output of these systems (vectors
representing the set of common and distinct features) is
then weighted by the general rule for the matrix (another
element-wise product). The outputs from the populations
representing the two weighted sets are then combined into a
final population, which represents the system's prediction for
the blank cell.

A.5. Parameter settings

Typical parameter settings for the model are listed in
Table A1. In the description of the experiments, these are the
values used unless explicitly mentioned otherwise. In
experiments involving a population of models, the standard
population size is 30 model instances. The vocabulary
words and neuron tunings (the ei in Eq. (4)) are randomly
generated. They are d dimensional vectors, where d is the

Table B1
Vocabulary used to describe the Raven's matrices.

Attribute Example values

79D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
vector dimension specified in Table A1. The vector elements
are chosen from N (0, 1), then the vectors are normalized to
be unit length.
Shape Circle, square, diamond, …
Number One, two, three …

Linestroke Normal, dashed, bold …

Angle 0°, 45°, 90°, …
Length Short, medium, long
Width Short, medium, long
Location NW, N, NE, … (quadrant of the cell)
Shading None, solid, left-hatch, …
Linetype Straight, curved, wavy, …
Radialpos Inner, middle, outer
Portion Left-half, right-half, bottom-half, top-half
Skew Left, none, right
Misc Present, absent
Appendix B. Representing Raven's matrices using VSAs

As mentioned in the discussion of VSAs, we use an
attribute-value system to encode Raven's matrices. Each cell
of the matrix is encoded as a separate vector, so there are
eight vectors describing the matrix (we do not bother
encoding the blank cell). The answers are encoded in exactly
the same way as the cells of the matrix, for a total of 16
vectors to describe the information in each matrix.

The vocabulary is fixed and common for the entire RPM
test, we do not generate new vocabularies tailored to each
matrix (as is done in Carpenter et al., 1990). The complete list
of attributes and values used to describe the matrices is given
in Table B1.13 This vocabulary allows us to describe all of the
problems in the RPM. However, the model does not make any
assumptions about how the matrices are described; any
alternate vocabulary that captures equivalent information
could be substituted into the system without requiring
modification to the model itself.

The descriptiveness of the vocabulary is limited by the
dimension of the vectors. Recall from Fig. 2 that the more
words in the vocabulary, the higher the dimension of the
vectors required to represent those words. In our model we
are restricted by computational limits to 30 dimensional
vectors, and a correspondingly simple vocabulary. Thus for
certain obscure values (such as strange non-regular shapes)
we might not have a corresponding word in the vocabulary.
In those cases we substitute in a value that is in the
vocabulary, leaving the structure of the problem unchanged.
Human subjects will be able to develop a much richer and
more nuanced description of the matrices, as they could
employ up to an estimated 500 dimensions (Eliasmith, 2013).
However, as mentioned, the model is not dependent on this
vocabulary; as increasing computational power allows us to
build more detailed vocabularies, those vocabularies can be
incorporated into the model without changing the model
itself.

In most cases the vocabulary vectors are randomly gener-
ated, as in the standard procedure for VSAs. However, for certain
values a more complex generation method is required. These
are values that are related to each other in some way, such as
numbers or locations. The concepts of north and north-west are
related to each other innately by the idea that north-west is to
thewest of north. Similarly, two is related to one by the idea that
two is onemore than one. This is in contrast to an attribute such
as shape, where values like square, cross, and dot have no
particular relationship to one another. When the values are
related we want to capture those relationships in our VSA
vocabulary, and so the vectors cannot be random. Instead, we
generate a base vector (e.g., a vector one) and an “increment”
vector for that attribute. Then the concept for two, instead of
13 The “misc” attribute is used to describe attributes that are only present
in single matrices and take on a binary value of either being present or not.
For example, in one matrix shapes can either be folded in half or not. Rather
than creating a separate attribute for “foldedness”, we would capture this
under the “miscellaneous” attribute.
being randomly generated, is created by convolving one with
the increment vector. Convolving onewith the increment vector
twice will give three, and so on. Evidence for the existence of
these kinds of representations in human subjects is explored in
detail in Carey (2009); in particular, she examines how the
understanding of the “increment” relationship linking the
natural numbers develops in young children (for earlier work
see Gelman & Gallistel, 1978).

To describe a cell of the matrix we create sets of these
attribute-value pairs through the VSA superposition operation.
In general, we only include attributes that are relevant to the
problem; attributes that are constant across all rows and
columns are left out of the description. This is consistent with
the Carpenter et al.'s (1990) approach, upon which ours is
loosely based. However, if an attribute is particularly important
we will include it even if it is not relevant. For example, to
describe cell1,1 of thematrix shown in Fig. 1wewould create the
vector shape ⊛ arrow + number ⊛ one + angle 90°. Shape ⊛
arrow is constant throughout the matrix so is not necessary to
solve the problem, but we include it anyway as otherwise we
are leftwith a strange description of the number and angle of an
unknown object. However, we would not include an attribute
such as line-stroke, as the boldness of the lines is not important
in this problem. This step is not critical to themodel's successful
performance; if non-relevant attributeswere left in, theywould
simply be described via a constant sequence or set rule.
However, this is not an accurate reflection of how human
subjects solve these problems; Carpenter et al. (1990) describe
how subjects instinctively perform a similar filtering process,
ignoring features that are constant throughout the matrix. Thus
in order to have the model's rule generation conform as closely
as possible to human rule generation, we also leave out these
irrelevant attributes.

One added complication occurswhen there ismore than one
feature present in the cell. For example, naively we might
describe cell1,1 of Fig. 3 by shape ⊛ circle + shading ⊛ solid +
number ⊛ one + shape ⊛ arrow + shading ⊛ none + angle ⊛
90°. However, the superposition operation does not preserve
any order information, so it is unclear in that description which
of the attributes belongs to which feature. The vector could
equally well be describing a shaded arrow and unshaded circle.
To resolve this ambiguity we add a final component into the
vector which acts as a “tag” for each feature (Plate, 2003). The
tag is equal to the convolution of all the attribute-value pairs for
that feature. For example, the tag for the shaded circle would

14 The Carpenter et al. (1990) model is somewhat ambivalent in this
regard, as they found that both working memory control and working
memory capacity were important to their model's performance.

80 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
be A = shape ⊛ circle ⊛ number ⊛ one ⊛ shading ⊛ solid,
and a similar B tag for the arrow. The complete description
of the cell is then shape ⊛ circle + shading ⊛ solid +
number ⊛ one + shape ⊛ arrow + shading ⊛ none + angle ⊛
90° + A + B. This description preserves all the information
about the items in the cell, but is no longer ambiguous.
It will not be the same as the vector for a shaded arrow
and unshaded circle, because the tag for unshaded circle
(shape ⊛ circle ⊛ number ⊛ one ⊛ shading ⊛ none) is not
present in the description of the cell.

Appendix C. Working memory

The Raven's Progressive Matrices test has a long associ-
ation with research into working memory. In general, fluid
intelligence, the ability most often associated with the RPM,
has been shown to be strongly correlated with many
working memory tasks (Conway et al., 2003), even leading
some to argue that the two are almost synonymous
(Kyllonen & Christal, 1990). More specifically, one of the
main contributions of the empirical and modeling work of
Carpenter et al. (1990) was investigating the relationship
between working memory and RPM performance. Thus,
while working memory is not the focus of this paper, we
provide a brief discussion here in order to illustrate how this
model might be used to connect to that body of work. In
particular, Carpenter et al. (1990) suggested that differences
in working memory explain significant portions of individ-
ual differences in RPM performance. This is the question we
will address here: can the performance of the model on the
RPM be explained by its underlying working memory
ability?

To test this we began by setting up a population of 300
models as in Experiment 9. We then ran the models through
the Raven's test as normal to get a measure of their individual
ability. Next, in order to get a measure of each individual's
working memory ability, we ran them through the RPM again
but introduced a delay between when the model generates a
rule and when it picks an answer of 1–10 s. This forces the
model to maintain the rule it has generated in the averaging
integrator populations (see the model descriptions). This is
the population that stores the individual rules that are
calculated and updates the stored information as new data
is encountered, a classic example of the type of processing
attributed to working memory. In addition, recurrent neural
attractors such as this are frequently used as models of
working memory in computational neuroscience (Brody,
Romo, & Kepecs, 2003; Laing & Chow, 2001). Thus it is
reasonable to describe the performance of this component as
a measure of working memory ability.

In order to assess the performance of the working
memory component we calculated the average similarity
between the rule vectors stored in this component at the
beginning and end of the delay periods, across all 36 items of
the RPM. Successful performance involves minimizing any
drift in the stored value over the delay period, so higher
working memory ability corresponds to greater similarity
between the before and after rules.

Next, we looked at the correlation between each model's
working memory score and overall RPM score. The result
showed no correlation between the two measures (r = 0.008
for a 1 second delay, r = −0.068 for a 10 second delay). In
other words, it appears that the overall performance of the
models cannot be explained by the performance of theworking
memory component. This seems surprising given the known
link between working memory and the RPM, but in fact it is
consistent with current data if we look in more detail at what
aspect of working memory is being assessed.

What we are measuring is the very basic ability of the
model to store a rule, with no modification, over the delay
period. This capacity for storage is often separated in the
working memory literature from the more complex ability to
manipulate and manage the contents of that storage (Conway,
Kane, & Engle, 2003; Kane & Engle, 2002). Work with the RPM
has revealed that it is the former, not the latter, that best
explains the observed correlations between the RPM and
working memory (Unsworth & Engle, 2005; Wiley, Jarosz,
Cushen, & Colflesh, 2011). Thus researchers have argued that it
is variation in the ability to control working memory that
contributes to individual differences on this task, not variations
in storage capacity or quality. Our results are in line with this
perspective, demonstrating that although the ability to store
information is important to task performance, variations in this
ability do not explain individual differences.14

This leaves open the question of whether or not the model
would demonstrate correlations between performance and
more complex aspects of working memory. In addition, other
work on the RPM has suggested that the observed working
memory correlations may in fact be a result of a complex
cascade involving more fundamental components such as
processing speed or learning ability (Tamez, Myerson, & Hale,
2008, 2012). Future work in this regard might involve
manipulations to the upstream rule generation mechanisms,
or to the controller that coordinates the three neural
components. As mentioned at the outset, we do not seek to
address the complex field of working memory in this paper.
We intend this discussion only as a brief demonstration that
this model can be used to connect to that body of work on the
RPM.
References

Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of
automaticity in perceptual categorization. Psychological Review, 114,
632–656.

Babcock, R. (2002). Analysis of age differences in types of errors on the
Raven's advanced progressive matrices. Intelligence, 30, 485–503.

Bekolay, T., & Eliasmith, C. (2011). A general error-modulated STDP learning
rule applied to reinforcement learning in the basal ganglia. In A.
Churchland, & B. Mel (Eds.), Proceedings of the 8th computational and
systems neuroscience meeting, COSYNE 2011, Salt Lake City.

Bolin, B. J. (1955). A comparison of Raven's progressive matrices (1938) with
the ACE psychological examination and the Otis Gamma mental ability
test. Journal of Consulting Psychology, 19, 400.

Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies
dissociate prefrontal activity from working memory demand. Neuron,
37, 361–367.

Bors, D., & Stokes, T. (1998). Raven's advanced progressive matrices: norms
for first-year university students and the development of a short form.
Educational and Psychological Measurement, 58, 382–398.

Bourjaily, M., & Miller, P. (2011). Excitatory, inhibitory, and structural
plasticity produce correlated connectivity in random networks trained

http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0005
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0005
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0005
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0010
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0010
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0415
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0415
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0415
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0415
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0015
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0015
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0015
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0020
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0020
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0020
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0025
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0025
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0025
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0030
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0030

81D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
to solve paired-stimulus tasks. Frontiers in Computational Neuroscience,
5, 37.

Brody, C. D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded
persistent activity: discrete attractors, continuous attractors, and
dynamic representations. Current Opinion in Neurobiology, 13, 204–211.

Carey, S. (2009). Where our number concepts come from. Journal of Philosophy,
106, 220–254.

Carpenter, P., Just, M., & Shell, P. (1990). What one intelligence test
measures: A theoretical account of the processing in the Raven
progressive matrices test. Psychological Review, 97, 404–431.

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J.,
et al. (2001). Rostrolateral prefrontal cortex involvement in relational
integration during reasoning. NeuroImage, 14, 1136–1149.

Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory
capacity and its relation to general intelligence. Trends in Cognitive
Sciences, 7, 547–552.

Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E.,
et al. (2009). Age-associated cognitive decline. British Medical Bulletin,
92, 135–152.

Deary, I. J., Whalley, L., Lemmon, H., Crawford, J., & Starr, J. M. (2000). The
stability of individual differences in mental ability from childhood to old
age: Follow-up of the 1932 Scottish Mental Survey. Intelligence, 28, 49–55.

Der, G., Allerhand, M., Starr, J. M., Hofer, S. M., & Deary, I. J. (2010).
Age-related changes in memory and fluid reasoning in a sample of
healthy old people. Aging, Neuropsychology, and Cognition, 17, 55–70.

Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal
lobe lesions. Neuropsychologia, 33, 261–268.

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe
recruited by diverse cognitive demands. Trends in Neurosciences, 23,
475–483.

Eliasmith, C. (2005). A unified approach to building and controlling spiking
attractor networks. Neural Computation, 17, 1276–1314.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological
cognition. Oxford: Oxford University Press.

Eliasmith, C., & Anderson, C. (2003). Neural engineering: Computation, represen-
tation, and dynamics in neurobiological systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.
(2012). A large-scale model of the functioning brain. Science, 338,
1202–1205.

Evans, T. (1968). A program for the solution of a class of geometric-analogy
intelligence-test questions. In M. Minsky (Ed.), Semantic information
processing (pp. 271–353). Cambridge: MIT Press.

Fjell, A.M.,Walhovd, K. B., Reinvang, I., Lundervold, A., Salat, D., Quinn, B. T., et al.
(2006). Selective increase of cortical thickness in high-performing elderly—
structural indices of optimal cognitive aging. NeuroImage, 29, 984–994.

Forbes, A. R. (1964). An item analysis of the advanced matrices. British
Journal of Educational Psychology, 34, 223–236.

Frank, M. J., & Badre, D. (2012). Mechanisms of hierarchical reinforcement
learning in corticostriatal circuits 1: computational analysis. Cerebral
Cortex, 22, 509–526.

Gayler, R. W. (2003). Vector symbolic architectures answer Jackendoff's
challenges for cognitive neuroscience. In P. Slezak (Ed.), ICCS/ASCS
international conference on cognitive science (pp. 133–138). Sydney:
University of New South Wales.

Gelman, R., & Gallistel, C. (1978). The child's understanding of number.
Pennsylvania: Harvard University Press.

Gentner, D. (1983). Structure-mapping: A theoretical framework for
analogy. Cognitive Science, 7, 155–170.

Goh, J. O. (2011). Functional dedifferentiation and altered connectivity in older
adults: Neural accounts of cognitive aging. Aging and Disease, 2, 30–48.

Golde, M., von Cramon, D. Y., & Schubotz, R. I. (2010). Differential role of
anterior prefrontal and premotor cortex in the processing of relational
information. NeuroImage, 49, 2890–2900.

Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general
fluid intelligence. Nature Neuroscience, 6, 316–322.

Gurney, K., Prescott, T. J., & Redgrave, P. (2001). A computational model
of action selection in the basal ganglia. Biological Cybernetics, 84,
401–423.

Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2007). Towards an executive without
a homunculus: Computational models of the prefrontal cortex/basal
ganglia system. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences, 362, 1601–1613.

Jung, R. E., & Haier, R. (2007). The Parieto-frontal integration theory (P-FIT)
of intelligence: Converging neuroimaging evidence. Behavioral and Brain
Sciences, 30, 135–187.

Kaasinen, V., Vilkman, H., Hietala, J., Nå ̊ gren, K., Helenius, H., Olsson, H., et al.
(2000). Age-related dopamine D2/D3 receptor loss in extrastriatal
regions of the human brain. Neurobiology of Aging, 21, 683–688.

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in
working-memory capacity, executive attention, and general fluid
intelligence: An individual-differences perspective. Psychonomic Bulletin
and Review, 9, 637–671.

Kaufman, A., Reynolds, C., & McLean, J. (1989). Age and WAIS-R intelligence
in a national sample of adults in the 20- to 74-year age range: A
cross-sectional analysis with educational level controlled. Intelligence,
13, 235–253.

Kirby, J. (1983). Effects of strategy training on progressive matrices
performance. Contemporary Educational Psychology, 8, 127–140.

Kroger, J. K., Sabb, F.W., Fales, C. L., Bookheimer, S. Y., Cohen,M. S., &Holyoak, K.
J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human
reasoning: a parametric study of relational complexity. Cerebral Cortex, 12,
477–485.

Kunda, M., McGreggor, K., & Goel, A. K. (2013). A computational model for
solving problems from the Raven's progressive matrices intelligence test
using iconic visual representations. Cognitive Systems Research, 22–23,
47–66.

Kunda, M., McGreggor, K., & Goel, A. K. (2012). Reasoning on the Raven's
advanced progressive matrices test with iconic visual representations. In
N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th
annual meeting of the Cognitive Science Society (pp. 1828–1833). Austin:
Cognitive Science Society.

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than)
working-memory capacity?! Intelligence, 14, 389–433.

Laing, C. R., & Chow, C. C. (2001). Stationary bumps in networks of spiking
neurons. Neural Computation, 13, 1473–1494.

Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., et al. (2006).
Neural correlates of superior intelligence: Stronger recruitment of
posterior parietal cortex. NeuroImage, 29, 578–586.

Lovett, A., & Forbus, K. (2012). Modeling multiple strategies for solving
geometric analogy problems. Proceedings of the 34th annual meeting of
the Cognitive Science Society.

Lovett, A., Forbus, K., & Usher, J. (2010). A structure-mapping model of
Raven's progressive matrices. In S. Ohlsson, & R. Catrambone (Eds.),
Proceedings of the 32nd annual conference of the Cognitive Science Society
(pp. 2761–2766). Austin: Cognitive Science Society.

Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter
integrity and cognitive aging: Contributions from diffusion tensor
imaging. Neuropsychology Review, 19, 415–435.

Marshalek, B., Lohman, D., & Snow, R. (1983). The complexity continuum in the
radex and hierarchical models of intelligence. Intelligence, 7, 107–127.

Melrose, R. J., Poulin, R. M., & Stern, C. E. (2007). An fMRI investigation of the
role of the basal ganglia in reasoning. Brain Research, 1142, 146–158.

Morse, C. K. (1993). Does variability increase with age? An archival study of
cognitive measures. Psychology and Aging, 8, 156.

Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva,
T., et al. (2007). Relationships between IQ and regional cortical graymatter
thickness in healthy adults. Cerebral Cortex, 17, 2163–2171.

Pakkenberg, B., &Gundersen,H. J. (1997).Neocortical neuronnumber in humans:
Effect of sex and age. Journal of Comparative Neurology, 384, 312–320.

Park, J., Carp, J., Hebrank, A., Park, D. C., & Polk, T. A. (2010). Neural specificity
predicts fluid processing ability in older adults. Journal of Neuroscience,
30, 9253–9259.

Park, D. C., Polk, T. a, Park, R.,Minear,M., Savage, A., & Smith,M. R. (2004). Aging
reduces neural specialization in ventral visual cortex. Proceedings of the
National Academy of Sciences of the United States of America, 101,
13091–13095.

Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C.
(2006). Decreased neural specialization in old adults on a working
memory task. Neuroreport, 17, 487–491.

Perfetti, B., Saggino, A., Ferretti, A., Caulo, M., Romani, G. L., & Onofrj, M.
(2009). Differential patterns of cortical activation as a function of fluid
reasoning complexity. Human Brain Mapping, 30, 497–510.

Peters, A., & Sethares, C. (2002). Aging and the myelinated fibers in
prefrontal cortex and corpus callosum of the monkey. Journal of
Comparative Neurology, 442, 277–291.

Plate, T. (2003).Holographic reduced representations. Stanford: CLSI Publications.
Polsky, A., Mel, B. W., & Schiller, J. (2004). Computational subunits in thin

dendrites of pyramidal cells. Nature Neuroscience, 7, 621–627.
Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E.

(1997). Neural substrates of fluid reasoning: An fMRI study of
neocortical activation during performance of the Raven's progressive
matrices test. Cognitive Psychology, 33, 43–63.

Rasmussen, D., & Eliasmith, C. (2011). A neural model of rule generation in
inductive reasoning. Topics in Cognitive Science, 3, 140–153.

Raven, J. C., Raven, J., & Court, J. (1991). Manual for Raven's progressive
matrices and vocabulary scales. Oxford: Oxford Psychologists Press.

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D.,
Williamson, A., et al. (2005). Regional brain changes in aging healthy
adults: General trends, individual differences and modifiers. Cerebral
Cortex, 15, 1676–1689.

http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0030
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0030
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0035
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0035
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0035
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0040
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0040
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0045
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0045
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0045
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0050
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0050
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0055
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0055
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0055
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0060
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0060
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0065
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0065
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0065
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0070
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0070
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0075
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0075
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0080
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0080
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0080
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0085
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0085
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0090
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0090
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0095
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0095
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0100
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0100
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0105
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0105
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0105
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0110
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0110
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0115
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0115
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0120
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0120
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0120
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0125
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0125
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0125
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0125
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0130
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0130
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0135
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0135
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0140
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0140
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0145
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0145
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0145
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0150
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0150
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0155
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0155
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0155
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0160
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0160
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0160
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0160
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0165
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0165
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0165
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0420
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0420
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0175
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0175
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0175
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0175
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0180
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0180
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0180
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0180
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0185
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0185
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0190
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0190
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0190
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0445
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0445
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0445
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0445
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0195
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0195
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0195
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0195
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0195
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0200
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0200
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0205
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0205
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0210
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0210
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0425
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0425
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0425
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0215
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0215
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0215
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0215
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0220
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0220
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0220
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0225
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0225
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0230
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0230
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0235
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0235
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0240
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0240
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0245
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0245
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0255
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0255
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0255
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0430
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0430
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0430
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0430
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0260
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0260
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0265
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0265
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0270
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0270
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0270
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0275
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0280
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0280
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0285
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0285
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0285
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0290
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0290
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0300
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0300
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0305
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0305
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0305

82 D. Rasmussen, C. Eliasmith / Intelligence 42 (2014) 53–82
Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate
solution to the selection problem? Neuroscience, 89, 1009–1024.

Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C.
(2003). Longitudinal magnetic resonance imaging studies of older
adults: A shrinking brain. Journal of Neuroscience, 23, 3295–3301.

Royle, N. A., Booth, T., Hernández, M. C. V., Penke, L., Murray, C., Gow, A. J., et al.
(2013). Estimated maximal and current brain volume predict cognitive
ability in old age. Neurobiology of Aging, 34(12), 2726–2733.

Salthouse, T. (1993). Influence of working memory on adult age differences
in matrix reasoning. British Journal of Psychology, 84, 171–199.

Salthouse, T. (1996). The processing-speed theory of adult age differences in
cognition. Psychological Review, 103, 403–428.

Salthouse, T. (2009). When does age-related cognitive decline begin?
Neurobiology of Aging, 30, 507–514.

Salthouse, T. (2011). Neuroanatomical substrates of age-related cognitive
decline. Psychological Bulletin, 137, 753–784.

Seger, C., & Cincotta, C. (2006). Dynamics of frontal, striatal, and hippocampal
systems during rule learning. Cerebral Cortex, 16, 1546–1555.

Staff, R. T., Murray, A. D., Deary, I. J., & Whalley, L. (2006). Generality and
specificity in cognitive aging: A volumetric brain analysis. NeuroImage,
30, 1433–1440.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking
model of action selection in the basal ganglia. In S. Ohlsson, & R. Catrambone
(Eds.), Proceedings of the 32nd annual conference of the Cognitive Science
Society (pp. 235–240). Austin: Cognitive Science Society.

Stewart, T. C., Tang, Y., & Eliasmith, C. (2011). A biologically realistic cleanup
memory: Autoassociation in spiking neurons. Cognitive Systems Research,
12, 84–92.
Sullivan, E. V., Adalsteinsson, E., & Pfefferbaum, A. (2006). Selective age-related
degradation of anterior callosal fiber bundles quantified in vivo with fiber
tracking. Cerebral Cortex, 16, 1030–1039.

Tamez, E., Myerson, J., & Hale, S. (2008). Learning, working memory, and
intelligence revisited. Behavioural Processes, 78, 240–245.

Tamez, E., Myerson, J., & Hale, S. (2012). Contributions of associative learning
to age and individual differences in fluid intelligence. Intelligence, 40,
518–529.

Thibadeau, R., Just, M., & Carpenter, P. (1982). A model of the time course
and content of reading. Cognitive Science, 203, 157–203.

Tucker-Drob, E. M. (2010). Global and domain-specific changes in
cognition throughout adulthood. Developmental Psychology, 47,
331–343.

Unsworth, N., & Engle, R. W. (2005). Working memory capacity and fluid
abilities: Examining the correlation between Operation Span and Raven.
Intelligence, 33, 67–81.

Van De Vijver, F. (1997). Meta-analysis of cross-cultural comparisons of
cognitive test performance. Journal of Cross-Cultural Psychology, 28,
678–709.

Vigneau, F., Caissie, A., & Bors, D. (2006). Eye-movement analysis demonstrates
strategic influences on intelligence. Intelligence, 34, 261–272.

Wiley, J., Jarosz, A. F., Cushen, P. J., & Colflesh, G. J. H. (2011). New rule use
drives the relation between working memory capacity and Raven's
advanced progressive matrices. Journal of Experimental Psychology, 37,
256–263.

Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related
changes in brain activation during a delayed item recognition task.
Neurobiology of Aging, 28, 784–798.

http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0310
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0310
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0315
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0315
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0440
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0440
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0325
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0325
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0330
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0330
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0335
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0335
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0340
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0340
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0345
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0345
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0350
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0350
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0350
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0355
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0355
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0355
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0355
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0360
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0360
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0360
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0365
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0365
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0365
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0370
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0370
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0375
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0375
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0375
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0380
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0380
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0385
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0385
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0385
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0390
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0390
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0390
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0395
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0395
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0395
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0400
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0400
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0405
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0405
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0405
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0405
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0410
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0410
http://refhub.elsevier.com/S0160-2896(13)00154-2/rf0410

	A spiking neural model applied to the study of human performance and cognitive decline on Raven's Advanced Progressive Matrices
	1. Introduction
	2. Background
	2.1. Raven's Progressive Matrices
	2.1.1. Previous models

	2.2. Modeling methods
	2.2.1. Vector symbolic architectures

	3. Model description
	3.1. Scope
	3.2. Model architecture
	3.3. Sequence component
	3.4. Set component
	3.5. Operation component
	3.6. Control structure

	4. Model experiments
	4.1. Demonstrating cognitive performance
	4.1.1. Experiment 1. Finding a correct solution
	4.1.2. Experiment 2. Matching human performance
	4.1.3. Experiment 3. Error analysis
	4.1.4. Experiment 4. Examining rule generality
	4.1.5. Experiment 5. Performance across tasks

	4.2. Investigating cognitive decline
	4.2.1. Experiment 6. Neuron loss
	4.2.2. Experiment 7. Representational dedifferentiation
	4.2.3. Experiment 8. Aging error patterns
	4.2.4. Experiment 9. Individual differences in aging

	5. Discussion
	Acknowledgments
	Appendix A. Neural implementations
	A.1. The Neural Engineering Framework
	A.2. Sequence component
	A.3. Set component
	A.4. Operation component
	A.5. Parameter settings

	Appendix B. Representing Raven's matrices using VSAs
	Appendix C. Working memory
	References

